LIFE CYCLE ASSESSMENT of a BRICK BEARING WALL

Using Longworth Hall, Cincinnati, Ohio, as a point of departure

Carl S. Sterner, LEED AP¹ December 2010

ongworth Hall, Cincinnati, Ohio // SOURCE

CONTENTS

- 1 Introduction & LCA Goals
- 2 Material Flow Diagram
- 3 LCA Scope
- **4** Phase 1: Extraction
- **5** Phase 2: Manufacturing
- 6 Phase 3: Construction
- 7 Phase 4: Operation & Maintenance
- 8 Phase 5: End of Life
- 9 Transportation
- **10** Overall Metrics by Life Cycle Phase
- 12 Comparison to EIOLCA
- **13** Conclusions & Recommendations
- 14 Bibliography
- **16** Appendix: Data & Sources

INTRODUCTION & LCA GOALS

Life Cycle Assessment (LCA) is becoming an increasingly important methodology for assessing building materials. It is particularly useful for understanding the production-related impacts of materials, as well as the potential trade-offs between life cycle stages.

This analysis of a brick bearing wall is both quantitative (tracking a series of economic, environmental, and ethical metrics across all life cycle stages) and qualitative (describing each life cycle stage and its impacts). In order to make this LCA as specific as possible, Longworth Hall in Cincinnati, Ohio, is used as a point of departure; however, industry-wide data also has been tracked whenever possible. Although Longworth Hall was constructed in 1904, present-day data has been used—effectively calculating the impacts of building Longworth Hall today.

Because of brick's durability, the costs and benefits of a brick wall are incurred over a long period of time and over many life cycle stages, making it difficult to assess through traditional means. LCA is uniquely poised to clarify these costs and benefits. Perhaps more fundamentally, the author was curious about the sustainability of brick. Conventional wisdom holds that bearing walls are impractically expensive and have high embodied energy. But brick is also extremely durable, as well as beautiful, and its construction celebrates craftsmanship and human labor. This assessment, therefore, was in part a test of conventional wisdom.

Longworth Hall, also knows as B & O Freight Terminal, is a brick masonry structure built in 1904. At 1,277 feet in length and five stories high, it is one of the largest buildings of its kind.² It is listed on the National Registry of Historic Places,³ and is currently used as an office building. It was selected because of the author's personal fondness for the building,⁴ and because it embodies the qualities of durability, flexibility, and beauty.

As with all LCAs, this analysis is limited by the availability of information. The author has tried to make the assessment as transparent as possible, highlighting assumptions and gaps in data. The results are also compared to EIOLCA, an existing LCA tool. Comments and questions are appreciated and welcomed. 1. E-mail: carlsterner@gmail.com

2. Longworth Hall website, "A Bit of History," http://www.longworthhall.com/about.html.

3. National Register of Historic Places, "B&O Freight Terminal," http://nrhp.focus.nps.gov/.

4. The author studied at the University of Cincinnati, and visited Longworth Hall on numerous occasions.

BRICK LCA MATERIAL FLOW DIAGRAM

This analysis looks at the economic, environmental, and ethical impacts of a brick bearing wall throughout its entire lifecycle—from the extraction of raw materials through the end of its useful life. Mapped here are the major materials and points of transportation included in the lifecycle of a brick wall. Also included are three potential end of life pathways: reuse, downcycling, and landfilling. Not included in this diagram is the supply chain of power generation (e.g., the total supply chain for electricity used in brick manufacturing). Also absent are the "accessories" of a brick bearing wall: metal coping, flashing, etc., as well as the supply chain of the equipment and tools required for manufacturing and construction (e.g., mixers, scaffolding, trowel, etc.).

BRICK LCA SCOPE OF ANALYSIS

This analysis focuses primarily on clay. A brick bearing wall is composed of 71% brick by volume. Brick, in turn, is composed of 80-85% clay. Clay therefore accounts for 57-60% of a brick bearing wall by volume. A more complete Life Cycle Assessment, however, would include all of the constituents shown on the prior page. In addition, this analysis assumes downcycling as the end of life pathway, both because it is common practice and because data is readily available. It further assumes that all transportation is by truck (also common practice). Finally, this analysis tracks six quantitative metrics through all lifecycle stages: cost, greenhouse gas (GHG) emissions, water use, injury / illness rate, fatality rate, and mean annual wage.

← EXTRACTION →	MANUFACTURING	→ ← CONSTRUCTION → ←	END OF LIFE
mining metals & other additives	BRICK MANUFACTURING	BUILDING SITE	REUSE
mining clay (80-85%)	crushing, pug mill extruded dried, packed (mixing) & cut fired, cooled (mixing)	bricks	reuse store reuse as brick
water (15-20%)		brick bearing wall	decon- struction DOWNCYCLING
mining limestone crusher			demo- lition crushed & storage reuse as aggre- gate gate
mining silica sand			LANDFILLING
mining clay, chalk, marl	blending silos preheat clinker cooling & cooli	Portland cement	C&D landfill
mining gypsum		water mortar	
mining	process- ing	sand	

BRICK LCA PHASE 1: EXTRACTION

Princeton Quarry, North Carolina // Google Maps, www.google.com/map

Stancills Clay Mine, Maryland // http://catherinewhite.com/rough-ideas/pottery/2008/10/

ECONOMIC

In general, common clay consumed domestically is produced domestically. Imports and exports of common clay are not significant; the U.S. Geological Survey does not track common clay as its own category.¹ According to Calkins (2010), clay quarries are typically "located adjacent to or within a few miles of the brick manufacturing facility [...]."² Research suggests that quarries are often owned and operated by the same companies that manufacture the brick.³

In 2008, the top four states producing clay for use in brick production were, in descending order, North Carolina, Georgia, Alabama, and Texas, which together accounted for 40% of production.⁴

In states that account for a high percentage of domestic clay production, mining often plays a significant role in the local economy. In North Carolina, for instance, brick manufacturing is the third largest mining industry,⁵ and the annual production value of common clay is \$12.9 million.⁶

ENVIRONMENTAL

The primary environmental impacts of clay mining are: land and habitat disturbance; soil erosion; and increasing turbidity of local waterways. However, clay mines are not as deep as other types of mines; former clay mines are often reclaimed and the end of their useful lives; and clay mining produces far less waste than other types of mining.⁷

Mining also comes with energy and water use, and emissions to air and water. Emissions to air are primarily from the combustion of fossil fuels. Data for clay mines was unavailable. Limestone mining was used as a proxy, which produces 5.11E-05 kg emissions per kg;⁸ clay likely emits less given the processes involved.

Water is used both for controlling dust at mines and for processing clay prior to shipping (which can include slurrying). Dust control measures use about 1-6 gallons of water per ton. Processing varies depending upon end use, but a rough figure is ~2,000 gallons per ton of finished product.⁹ It is not clear whether this water is reused.

mining // www.nylstene.co.za/Gallery/body_gallery.html U.S. Clay

ETHICAL

Mining is a high-risk occupation, with an average fatality rate of 12.7 per 100,000 workers per year (384.8% of the average of 3.3 across all sectors).¹⁰ This figure is likely lower for clay mining because the mines are relatively shallow and the material does not have to be blasted. The average injury / illness rate for mining is 3.4 per 100 employees—91.9% of the average of 3.78 across all sectors. Dust and particulates from clay mining can pose a risk if inhaled.¹¹

Miners appear to be paid a fair wage. In the Cincinnati area, the average salary is \$41,922—99% of the local average salary.¹² (This is an industry-wide average, including all of the workers in the "Non-metallic Mineral Mining and Quarrying" sector.) However, the wages are not proportional to the risk, suggesting that the occupation is at least somewhat exploitative.

U.S. Clay Production by State // data from U.S. Geological Survey (USGS 2010)

1. USGS, "Mineral Commodity Summary: Clays," 44-45.

2. Calkins, Materials for Sustainable Sites, 181.

3. For example, brick manufacturers Pine Hall Brick Company, Hanson Brick East, and General Shale Brick together account for more than half of the clay mines in North Carolina (the largest clay-producing state). See NC Dept. of Environment and Natural Resources, "Permitted Mines in North Carolina."

- 4. USGS, 2008 Minerals Yearbook, 18.21.
- 5. NCGS, "Mineral Resources."

6. National Mining Association, "Mining in North Carolina, 2004."

7. Calkins, Materials for Sustainable Sites, 182.

8. NREL, U.S. Life-Cycle Inventory Database, "Limestone, at mine."

9. Mavis, "Water Use in Industries," 50.

10. U.S. BLS, "2009 CFOI."

- 11. Calkins, Materials for Sustainable Sites, 182.
- 12. See Appendix A for calculations & sources.

BRICK LCA PHASE 2: MANUFACTURING

Images 1, 2, 3 and 4 from: http://catherinewhite.com/rough-ideas/pottery/2008/10. // Images 1, 2b, 5, 6, 7 and 8 from www.glengerybrick.com. // Images 2a, 3 and 4 from www.umich.edu/~bricks/brickwebsite

METHODOLOGY

The economic and environmental portions of the manufacturing analysis utilize data from the Department of Energy's Industrial Technologies Program (ITP), which (among other things) performs assessments of manufacturing facilities and makes suggestions for efficiency improvements. This analysis averages data from three facility assessments completed in 2010.¹

Greater accuracy could be achieved by (1) including a larger number of assessments, and/or (2) using a weighted average where appropriate. (For example, revenue per unit varied widely across the three facilities, and appeared to correlate with total output—i.e., those facilities with higher output had a far lower per unit revenue.)

Finally, it is not clear that the facilities assessed by ITP are representative of brick manufacturing facilities as a whole—there may be self-selection effects or other biases. Comparisons with other data sets could help to answer this question.

ENVIRONMENTAL & ECONOMIC

Brick production is incredibly energy-intensive. Brick kilns are typically heated to 350-400 degree Fahrenheit, and are normally powered by natural gas.² In the three facilities studied, the manufacturing process consumed an average of 3,776 Btu per brick, of which 78% was natural gas and 22% was electricity.³ This translates to 1.67 MMBtu per ton of bricks.⁴

Greenhouse gas emissions averaged 786.07 lbs CO₂e per ton brick, of which electricity production was responsible for 633.53 lbs and natural gas was responsible for 152.54 lbs.⁵ Despite only accounting for 22% of energy use, electricity production accounts for nearly 81% of emissions. This discrepancy warrants further investigation. One explanation could be that electricity generation in Ohio is primarily coal-fired, which is far dirtier than natural gas.

The three manufacturing facilities sampled took in anywhere between \$0.05 and \$0.52 per unit brick; this wide variance warrants further investigation.⁶

ETHICAL

Brick manufacturing has a high injury / illness rate, a relatively low fatality rate, and appears to pay a below-average salary. It therefore appears to be at least slightly exploitative based upon wages and risk. Given high injury and illness rates, health coverage for workers is an important factor in this equation, but has not been evaluated here.

The illness / injury rate for brick and structural clay tile manufacturing is 7.0 per 100 employees, which is well above the average of 3.7 across all industries.⁷ A specific fatality rate for brick manufacturing was unavailable; the fatality rate for the manufacturing sector overall is 2.2 per 100,000 employees, which is 66.7% of the average of 3.3 across all industries.⁸

In Cincinnati, brick manufacturing employees earn approximately 75% of the local average wage across all industries, but 96% of the local median wage across all industries.⁹

1. U.S. DOE, Industrial Assessment Centers Database (assessments UA0022, NC0352, and C00578).

2. Amato, et al., "Brick Manufacturing Process."

3. U.S. DOE, Industrial Assessment Centers Database.

4. For calculations, see Appendix A.

5. Natural gas emission data from U.S. DOE, "Fuel Emission Coefficients." Electricity emission data from U.S. EPA, "Greenhouse Gas Emission Factors."

6. U.S. DOE, Industrial Assessment Centers Database.

7. U.S. BLS, "Incidence Rates of Nonfatal Occupational Injuries and Illnesses, 2008."

8. U.S. BLS, "2009 CFOI."

9. Wage data from the U.S. Bureau of Labor Statistics. See Appendix A for calculations & sources.

BRICK LCA PHASE 3: CONSTRUCTION / ASSEMBLY

Longworth Hall, Cincinnati, Ohio // Google Maps, www.google.com/map

ECONOMIC

Although Longworth Hall was built in 1904, the figures below reflect present-day (2010) costs—what it would cost if Longworth Hall were constructed today.

Item	Cost per s.f. wall ¹	Cost per ton brick ²
Bare material cost (brick & mortar, including waste)	\$2.90	\$123.82
Labor cost	\$6.08	\$259.60
Total bare cost	\$8.98	\$383.42
Total cost (including overhead & profit)	\$12.34	\$526.88

While the material itself is relatively inexpensive, the labor costs make this type of construction relatively expensive, as a team of skilled brickmasons are required. However, this expense can be viewed as spending money on jobs and a long-lasting material.

ENVIRONMENTAL

The actual construction of a brick bearing wall incurs little environmental impact. Waste is minimal, and little equipment is required.

The waste factor for bricks is 5% and 25% for mortar.³ Construction wastes are often landfilled, although brick waste can also be recycled or reused (see "End of Life" for more).

Necessary equipment includes hand trowels, scaffolding, and possibly mechanical equipment for mixing mortar. Both of the former are people-powered, will be reused when construction is over, and are not associated with any on-site emissions. The latter (equipment for mixing mortar) likely has some CO₂ emissions associated with it, but data was not found at the time of this writing. (The emissions would not likely have a large impact on the overall Life Cycle Assessment figures.)

ngworth Hall under construction // all construction photos from www.longworthhall.com/abou

ETHICAL

Bricks are installed by a team consisting of (3) bricklayers and (2) bricklayer helpers.⁴ According to the U.S. Department of Labor Statistics, Brickmasons in Cincinnati earn approximately \$50,110 annually—118% of the local average of \$42,340.⁵ The illness / injury rate is 4.6 cases per 100 employees (124.3% of the average across all industries),⁶ and fatality rates are 18.3 per 100,000 employees (554.5% of average).⁷ Fatality data is for all "construction workers;" it is assumed that this figure is representative of bricklayers.

According to Calkins (2009), health risks for bricklayers are relatively minimal: dust from cutting bricks can irritate lungs and eyes, and prolonged exposure can cause serious respiratory problems.⁸ These risks, however, can largely be avoided by using proper protection.

Though the compensation is good, the high injury and fatality rates make the job at least slightly exploitative. As with other life cycle stages, health benefits are an important factor that have not been explored here.

- 1. RSMeans, "Reference Tables: Crews," Crew D-8, 685.
- 2. Calculated. For calculations, see Appendix A.

3. RSMeans, "Reference Tables: Clay Unit Masonry," 772.

4. RSMeans, "Reference Tables: Crews," Crew D-8, 685.

5. U.S. BLS, "Occupational Employment and Wages, May 2009."

6. U.S. BLS, "Incidence Rates of Nonfatal Occupational Injuries and Illnesses, 2008."

7. U.S. BLS, "2009 CFOI."

8. Calkins, *Materials for Sustainable Sites*, 186; citing others (ATSDR 2003b, and Demkin 1998b).

BRICK LCA OPERATION & MAINTENANCE

Longworth Hall, ca. 1904 // www.longworthhall.con

ngworth Hall, Cincinnati, present day // www.longworthhall.com

ongworth Hall, "F

LIFESPAN OF BUILDING MATERIALS

While brick has a high embodied energy, it is an extremely durable material, particularly when used in a bearing wall application. According to Joseph Lstiburek of the Building Science Corporation, brick has an expected lifespan of 100 years or more.¹ Longworth Hall, built in 1904, is 106 years old at the time of this writing, and will likely be in service for at least several more decades. This gives brick an advantage when compared to other, less durable, materials. As Lstiburek notes, "If you double the life of a building and you use the same amount of resources to construct it, the building is twice as resource efficient. Therefore durability is a key component of sustainability."²

However, not all of the components of a brick wall have the same lifespan. Metal coping and flashing lasts 25 to 75 years; mortar lasts 25 to 50 years; and some more modern additions to brick walls, such as sealants and brick ties, only last 5 to 20 years. In many cases, the lifespan of the assembly is limited by the lifespan of the least durable component.

MAINTENANCE

In general, brick bearing walls are very durable and require little maintenance. Most maintenance is preventative: checking for hairline cracks, deterioration of mortar, plant growth on the wall, or other factors that could signal problems or lead to eventual damage. Non-brick components (such as coping) need to be replaced at the end of their lifespan.³

Perhaps the most arduous task is repointing—the process of replacing mortar that has deteriorated and/or reached the end of its useful life. Repointing is typically required every 25 to 50 years. Mortar is removed to a uniform depth, and new mortar is applied. Like the construction of a brick wall, repointing is labor-intensive and requires stilled craftsmen. As a result, it bears similar liabilities, and has similar environmental and ethical merits, as brick construction.

Damaged bricks may occasionally need to be replaced. Like repointing, this requires a skilled craftsman, but requires little in the way of materials.⁴

BUILDING OPERATION

Because this analysis is focused on a material, brick, rather than a building, the energy used for building operation is beyond its scope. Operating energy is, however, significant over the life of a building. In some contexts, brick may contribute to the energy performance of a building through its thermal mass effects. Brick, like concrete, stone, and other massive materials, is highly effective at storing heat energy. This "thermal lag" can mitigate diurnal temperature swings, and can be used to capture and store solar heat energy in winter months.⁵

Longworth Hall is uninsulated, and Cincinnati's weather covers a large range between hot and cold. As a result, the contribution of brick to the performance of the building is unclear, and requires further investigation. A more robust life cycle assessment would take building operation into account in an effort to understand trade-offs between lifecycle phases.⁶

ddy's Belgian Bistro" // photo by Eleanor Howell, http://www.flickr.com/photos/eleanorh/2748911948/

1. Joseph Lstiburek, "Increasing the Durability of Building Constructions."

2. Ibid.

3. Brick Industry Association. "Maintenance of Brick Masonry."

4. Ibid.

5. Brick Industry Association. "Passive Solar Heating with Brick Masonry."

6. A 2009 study of historic buildings by the Athena Sustainable Materials Institute found that, property renovated, historic structures could perform as well as (or even better than) new buildings. They attribute this in part to thermal mass benefits and low window-to-wall ratios. Athena Sustainable Materials Institute, "A Life Cycle Assessment Study of Embodied Effects for Existing Historic Buildings," 21.

BRICK LCA END OF LIFE

C&D Landfill // http://ze-gen.com/rethink/harnessing-the-energy-of-your-home%E2%80%99s-renovation-debris

Hafner & Sons, Inc., Cincinnati, Ohio // Google Maps, www.google.com/map

LANDFILL

The nearest construction and demolition waste (C&D) landfill to Longworth Hall is H. Hafner & Sons, Inc., which provides both landfilling and recycling services. This facility was used for landfilling and recycling data. Further research is needed to understand whether this case is representative of C&D landfills in general.

H. Hafner & Sons charges for construction waste by the container. Price depends on whether the container contains "clean fill, brush, construction / demolition debris," or "solid / sanitary waste." The former is substantially cheaper: \$325 vs. \$500, respectively, for a 20-yard container.¹ Presumably this is due to the economic advantage of clean debris, which can be recycled into salable products.

"Solid waste landfills" have an injury / illness rate 148.6% above the average across all industries,² and a fatality rate 763.6% above the average.³ However, the mean annual wages for "waste treatment and disposal" were only 88% of the average salary in Ohio.⁴ As a result, landfilling appears to be at least moderately exploitative.

RECYCLING

H. Hafner & Sons downcycles approximately 65% of its daily infeed into landscape supplies such as gravel, aggregate, and mulch. According to Justin Cooper, operations manager, "From the landfill, we receive all of the materials that we need to support our landscape material supply business."⁴ Non-treated wood is ground for mulch; cardboard is composted with yard waste; concrete and brick are crushed for recycled aggregate; and metals are sorted and sold for scrap. While recycling confers an economic advantage, its environmental impacts are unclear—particularly since it is being downcycled into a lower-grade material rather than being truly recycled.

Separate ethical indicators for recycling services are not available from the Bureau of Labor Statistics. More fine-grained information is needed to determine whether recycling facilities differ markedly from other waste facilities.

uilding Value retail outlet // www.soapboxmedia.com/devnews/1117buildingval

REUSE

Brick walls can be "deconstructed" rather than "demolished." This allows the material to be reused as brick, rather than downcycled.

There are several resources for building reuse in Cincinnati. Building Value is a building re-use store that accepts brick for reuse. In addition, Building Value provides "on-the-job training [...] to move people with workforce disadvantages into construction and retail careers."⁶ Similarly, Covington Reuse Center accepts brick, and hires and trains people with "workplace disadvantages."⁷ Both provide building deconstruction services, as well as storing and selling salvaged materials.

Building deconstruction is much more labor-intensive (and therefore expensive) than demolition; however, because reuse operations tend to use a non-profit model, the precise cost difference is difficult to ascertain. While no figures are available regarding illness / injury / fatality rates, the explicit social mission of many building reuse operations suggests strong ethical performance.

e.aspx

1. H. Hafner & Sons, Inc., "Cincinnati Dumpster Rental."

2. U.S. BLS, "Incidence Rates of Nonfatal Occupational Injuries and Illnesses, 2008."

3. U.S. BLS, "2009 CFOI."

4. U.S. BLS, "Occupational Employment and Wages, May 2009."

5. Quarry News, "Cincinnati Recycler Prefers Keestrack Destroyer."

6. Building Value, "Job Training."

7. Covington Re-Use Center website.

BRICK LCA TRANSPORTATION

1.Extraction & Manufacturing

Princeton Quarry, North Carolina // Google Maps, www.google.com/map

TRANSPORTATION DATA

Transportation figures are based upon Longworth Hall in Cincinnati, Ohio. Research indicates that these figures are slightly below average, but not atypical.

Transportation	Distance (miles)	Notes
Extraction to manufacture	0	Quarry is co-located with brick plant. Research indicates this is not atypical.
Manufacture (1) to assembly (2)	123	From Hanson Brick (Staunton, KY) to Longworth Hall. 70% of metropoli- tan areas are within 200 miles of a brick manufacturing facility. ¹
Assembly (2) to disposal (3)	10.6	From Longworth Hall to H. Hafner & Sons recycling / C&D Landfill
TOTAL	133.6	Cradle-to-grave

ransportation map // Carl Sterne

ENVIRONMENTAL

Assuming emissions of 22.2 lbs of CO_2 per gallon of diesel fuel burned, an average fuel efficiency of 6 mpg for large trucks, and an average load of 12 pallets of brick per truck, the transportation of brick for Longworth Hall emits 37.88 lbs of CO_2 per ton of bricks.² The majority of this is from the point of manufacture to the point of assembly, which accounts for 92% of the transportation and associated emissions. Using industry-average data (rather than Longworth Hall-specific figures) yields slightly higher values: 75.13 lbs of CO_2 per ton of bricks, of which 75% is from manufacture to point of assembly.

Bricks tend to be shipped on wood pallets. Approximately 50% of these are recovered and reused.³ Some companies have found ways to ship bricks without pallets. In addition, some manufacturers are experimenting with incorporating sawdust or other fillers into bricks, which yields a lighter product that requires less energy to ship.⁴ However, a full LCA would be required to ascertain the overall performance of these alternatives.

ECONOMIC & ETHICAL

According to the "price estimator" on the website UShip, the shipping costs for brick are likely in the range of \$65.00 per ton.⁵ The relatively short distances between life cycle stages means relatively low shipping costs; however, the weight of brick (a single pallet is about 1.5 tons) certainly counts against it.

Truck drivers have very high rates of injury and illness, and are among the occupations with the highest fatality rates. The injury rate for truck drivers is 5.5 per 100 full-time employees, 148.6% higher than the average of 3.7 across all industries.⁶ The fatality rate is 18.3 per 100,000 employees per year, 555% higher than the average of 3.3 across all industries.⁷

The median annual wages for a truck driver in Ohio are \$37,770, 114.5% above the median of \$32,950 across all occupations. Mean annual wages are \$39,260, 92.7% of the mean across all occupations.⁸ Even so, the wages are is not proportional to the increased risks of injury and/or death.

Hall // Google Maps, www.google.com/maps

3. End of Life

I. Hafner & Sons // Google Maps, www.google.com/maps

1. Brick Industry Association, "Sustainability and Brick."

2. Data from: U.S. EPA, "Emission Facts;" Lawrence Livermore National Laboratory, "Lawrence Livermore National Lab, Navistar Work to Increase Semi-Truck Fuel Efficiency;" and Pioneer Sand Co., "Flagstone Wholesale." For complete calculations, assumptions, and sources, see Appendix A.

3. Hanson Brick and Tile, "Sustainable Development."

4. Boral Bricks, Inc., "Building With Brick."

5. U Ship website, Price Estimator.

6. U.S. BLS, "Incidence Rates of Nonfatal Occupational Injuries and Illnesses, 2008."

7. U.S. BLS, "2009 CFOI."

8. U.S. BLS, "Occupational Employment and Wages, May 2009."

BRICK LCA METRICS BY LIFE CYCLE STAGE

ECONOMIC INDICATORS

ENVIRONMENTAL INDICATORS

COST (US dollars per ton brick)

The construction of a brick bearing wall is by far the most expensive stage of its life cycle. Brick is labor-intensive, requiring a team of skilled brickmasons to assemble the structure by hand.

From an economic perspective, brick is a costly material. But from an ethical and environmental perspective, paying for human labor (as opposed to paying for energy or material use) is perhaps the more sustainable option. Brickmasons are well-paid (see next page), and construction comes with relatively few environmental costs. Equipment is largely people-powered, is reused when construction is over, and is not associated with any on-site emissions (with the possible exception of equipment for mixing mortar, which have not been quantified here).

Finally, clay is produced domestically, often within 200 miles of a project site. Buying local can help strengthen a local economy by increasing the multiplier effect—the impact of a dollar spent.

GREENHOUSE GAS EMISSIONS (lbs CO₂-e per ton brick)

The manufacturing of brick is an energy-intensive process typically powered by natural gas. Brick kilns heat the brick to 350-400 degrees Fahrenheit (and sometimes as high as 2000 degrees F). Transportation figures are relatively low (824 lbs CO₂-e per ton over the entire life cycle). Clay extraction is often co-located with brick manufacturing facilities, which in turn are typically within 200 miles of a project site.

Not considered here are the impacts of brick construction on the operation and maintenance of the building of which it is part. Also not considered are the supply-chain impacts of energy production, or supply-chain impacts of equipment.

The lifespan of a brick wall is approximately 100 years (although many brick structures clearly last longer than this). Thus the high embodied energy of brick should be weighed against its durability when comparing to other materials.

WATER USE (gallons per ton brick)

Most water is used during extraction, primarily for processing prior to manufacturing. More research is needed to verify these rough figures, to establish whether any water is reused, and to understand the quality of any water released.

Additional environmental impacts not quantified in this study include the following:

Land use impacts. Quarrying clay and construction of a building can disrupt habitat and contribute to soil erosion. However, clay mines are relatively shallow and are often reclaimed after use.

Material use / waste. Wasted material accumulates at each stage of the life cycle. However, clay mines produce less waste than other types of mining, and scrap produced during manufacturing is often collected and reincorporated into subsequent batches. During construction, a waste factor of 5% for brick and 25% for mortar is typical. Finally, while landfilling has been assumed here, many opportunities exist for reuse or recycling of brick.

Note: percentages may not sum to 100% due to independent rounding.

This data is available in table form on page 17. For complete calculations, see Appendix A.

BRICK LCA METRICS BY LIFE CYCLE STAGE

ETHICAL INDICATORS

FATALITY RATE (cases per 100,000 employees)

All but one of the life cycle stages have fatality rates that are substantially higher than the average of 3.3 across all sectors. Indeed, several occupations appear on the U.S. Bureau of Labor Statistics' list of "Selected Occupations with High Fatal Injury Rates, 2009."

However, is data is far less specific than the injury / illness data. The following are the (more general) categories / sectors from which the data was drawn:

- Extraction: Mining.
- Manufacturing: Manufacturing sector.
- Construction: Construction laborers.
- Operations: N/A
- End of life: Refuse & recyclable material collectors.
- Transportation: Driver/sales workers and truck drivers.

Ideally all three ethical indicators should use the same (and very specific) categories. Such data may be available from the U.S. Bureau of Labor Statistics.

ΜΕΑΝ (μ) AND MEDIAN (x̃) ANNUAL WAGE (\$ per year)

Extraction and construction workers are paid close to or higher than the average annual salary of \$42,340 in Ohio. Relative to the injury/illness rates, the pay appears fair (or even generous). However, compared to the fatality rates, the pay is not proportional to the increased risk. Overall, and given the uncertainty of the fatality rate data, the analysis suggests that these jobs are reasonably fair and equitable.

Transportation, manufacturing, and waste management workers, on the other hand, earn less than the average annual salary and yet bear substantially higher rates of both injury/illness and fatality. This suggests that these jobs are exploitative.

Mean and median annual wages do not appear to differ markedly in the sectors for which data was available.

Many of the lifecycle stages have above-average injury & illness rates, compared to the average of 3.7 across all sectors (represented by the dashed line above). The surprising exception is clay mining.

INJURY / ILLNESS RATE (cases per 100 employees)

The data has been made as specific as possible; however, different lifecycle stages have varying levels of specificity. The following are the categories / sectors from which the data was drawn:

- Extraction: Clay and ceramic and refractory minerals mining (NAICS 212325).
- Manufacturing: Brick and structural clay tile manufacturing (NAICS 327121).
- Construction: Masonry contractors (NAICS 23814).
- Operations: N/A
- End of life: Solid waste landfill workers (NAICS 562212).
- Transportation: General freight trucking, long distance (NAICS 48412).

This data is available in table form on page 17. For complete calculations, see Appendix A.

BRICK LCA COMPARISON TO EIOLCA

ECONOMIC ACTIVITY (millions of dollars)

		32712A Brick, tile, and other structural day product manufacturing	1.0
		\$50000 Management of companies and enterprises	0.1
		221200 Natural gas distribution	0.1
		420000 Wholesale trade	a.a
1	-	221100 Power generation and supply	0.0
		All Other Sectors(486 remaining sectors)	0.0

ENERGY USE (millions of kWh)

 32712A Brick, tile, and manufacturing
221100 Power generat
325190 Other basic org
All Other Sectors (488 n

manufacturing	23.3
221100 Power generation and supply	4.3
325190 Other basic organic chemical manufacturing	¢.,
All Other Sectors(488 remaining sectors)	3.3
	manufacturing 221100 Power generation and supply 325190 Other basic organic chemical manufacturing All Other Sectors(488 remaining sectors)

GHG EMISSIONS (metric tons CO₂e)

	32712A Brick, tile, and other structural day product manufacturing	1.3K
	221100 Power generation and supply	356.3
-	211000 Oil and gas extraction	\$7.9
	212100 Coal mining	43.8
н	486000 Pipeline transportation	24.7
	All Other Sectors(486 remaining sectors)	180.9

TOXIC RELEASES (kilograms)

		2
		2
	 -	3 p
		2
	-	٨
1		

	2122AD Gold, silver, and other metal ore mining	147.0
	221100 Power generation and supply	6.4
	32712A Brick, tile, and other structural day product manufacturing	3.4
-	212230 Copper, nickel, lead, and zinc mining	3.1
	All Other Sectors(487 remaining sectors)	5.1

Why compare?

Performing an LCA entails making numerous assumptions and utilizing data that is not always perfectly up-to-date, representative, or complete. By comparing the findings of this study to findings from other sources utilizing other methodologies, we can see whether the findings match or whether there are major discrepancies. Future research could compare to product-oriented LCA tools such as BEES or the Athena Impact Estimator.¹

What is **EIOLCA**?

EIOLCA stands for Economic Input Output Life Cycle Assessment. It is a macro-scale LCA tool first proposed by economist Wassily Leontief, and operationalized by researchers at Carnegie Melon University. It uses industry-wide data to estimate materials and energy resources required for, and the environmental emissions resulting from, the activities of specific economic sectors: "The method uses information about industry transactions—purchases of materials by one industry from other industries, and the information about direct environmental emissions of industries, to estimate the total emissions throughout the supply chain."²

Comparison of Scope

The analysis performed here was cradle-to-grave: from extraction of raw materials through the end of the product's life. EIOLCA's assessment is cradle-to-gate: from the extraction of raw materials to the gate of the manufacturing facility. Therefore, EIOLCA does not take into account impacts from transportation to the site, construction, or end of life. Within its cradle-to-gate scope, however, EIOLCA is extremely comprehensive, including all transactions through the entire supply chain.³ Whereas the scope of this assessment did not even include all of the components of brick (metals and other additives)—let alone the life-cycle impacts of the machinery required to manufacture brick or the supply chain of power generation (oil and gas extraction, coal mining, pipeline transportation, etc.)—EIOLCA includes all of this and more. A final difference is EIOLCA's uses industry-wide averages rather than site-specific values. My analysis used a combination of the two, favoring site-specific data where available.

Comparison of Data

Two metrics that appear in both assessments—economic activity and GHG emissions—are compared in the table below.⁴ There are two primary discrepancies. First, EIOLCA allocates a much smaller percentage of economic activity to extraction (even adjusting for differences in scope): 2.5% vs. 29.8%. This may be the result of mismatched metrics that are not tracking comparable data. Nonetheless, the cost data used in this analysis should be verified.

Second, EIOLCA shows a large portion of GHG emissions resulting from power generation and its supply chain, which were not included in this analysis. When the scopes are properly matched (including revising the transportation figure to reflect only industry average cradle-to-gate data), the allocation of GHG emissions across life cycle stages are nearly identical. Therefore, if one accounts for the differences in scope and data, the two analyses appear to agree, particularly regarding the large energy and GHG implications of brick manufacturing.

Finally, EIOLCA reveals that there are toxic releases associated with many of the brick additives—the small amounts of metals added to brick (primarily for coloring). How many of these materials are unnecessary and could be avoided? ("No artificial colors"?)

	ECONOMIC ACTIVITY							GREENHOUSE GAS EMISSIONS							
	This Analysis	5			EIOLCA		This Analysi	s	EIOLCA						
	Cost (US \$		Cost without	% without	Economic Activity		GHG Emissions (lbs CO ₂ -e		GHG Emissions (metric tons		GHG Emissions without	% without			
	per ton)	% of total	or Transp.	or Transp.	(millions of \$)	% of total	per ton)	% of total	CO ₂ -e)	% of total	Power Gen.	Power Gen.			
Extraction	\$44.81	5.9%	\$44.81	. 29.8%	0.037	2.8%	0.10	0.0%	0.0	0.0%	0.0	0.0%			
Manufacturing	\$105.62	14.0%	\$105.62	2 70.2%	1.033	78.2%	786.07	95.4%	1350.0	70.6%	1350.0	96.9%			
Construction	\$526.88	69.8%					0.00	0.0%				X/////////////////////////////////////			
End of Life	\$11.84	1.6%					0.04	0.0%				X/////////////////////////////////////			
Transportation	\$65.16	8.6%					37.88	4.6%	10.3	0.5%	10.3	0.7%			
Power Generation & Supply Chain					0.04	3.0%			517.9	27.1%					
Other					0.211	16.0%			33.5	1.8%	33.5	2.4%			
TOTALS	\$754.31	100.0%	\$150.43	3 100.0%	1.321	100.0%	824.10	100.0%	1911.7	100.0%	1393.8	100.0%			

1. For more on BEES, see the National Institute of Standards and Technology (NIST), http:// www.nist.gov/el/economics/BEESSoftware. cfm. For more on the Athena Impact Estimator, see the Athena Sustainable Materials Institute, http://www.athenasmi.org/tools/impactEstimator/.

2. Carnegie Mellon University, "About the EIO-LCA Method."

3. Carnegie Mellon University, "Approaches to Life Cycle Assessment."

4. For complete EIOLCA data, and a larger version of the comparison table, see page 28.

BRICK LCA CONCLUSIONS & RECOMMENDATIONS

ECONOMICS

Summary

Brick is expensive, but a large part of this expense is paying for human labor (craftsmanship) rather than material or energy use. Whether this trade-off is "worth it" financially depends upon the values and goals of the designer and/or client. Brick bearing wall structures are very durable, so the high initial cost may be offset by its long lifespan.

Recommendations for Designers

Because of its high up-front costs and long life, brick may make the most financial sense for government and institutional clients who are invested in the life of the building and may be more willing to pay for long-term durability. Life cycle cost assessment may help to quantify the long-term benefits of durability (although the value of future benefits depends heavily on the discount rate used). Detailing and mortar specifications that reduce the frequency of repointing may reduce the life cycle cost.

Recommendations for Manufacturers

Reducing energy use and improving material efficiency may help to reduce the cost of brick; however, as noted above, the primary cost is incurred during construction rather than manufacturing. Innovations in pre-manufactured brick walls could reduce cost, but should be evaluated for effects on durability and life-cycle cost.

Note: This analysis has focused on monolithic brick bearing walls rather than brick veneer, which typically has a much shorter lifespan (40-60 years, rather than 100+). Further research could focus on comparing the life cycle cost (LCC) of the two.

ENVIRONMENT

Summary

The primary environmental concern with brick is the energy used in manufacturing. While brick does, indeed, have high embodied energy, this cost must be divided by its lifespan, and compared in equivalent terms to any alternatives.

Recommendations for Designers

Because of brick's high embodied energy, durability is a primary concern. Designers should focus on creating a building that is highly flexible and adaptable to many future uses, as well as emphasizing careful detailing to extend the wall's life.¹

In addition, designers should look for manufacturers that (1) use renewable energy and/or actively seek to reduce brick's embodied energy, and (2) extract and manufacture the product locally (to minimize transportation impacts).

Finally, designers should take advantage of brick's thermal mass effects in order to reduce the building's operating energy use.

Recommendations for Manufacturers

Manufacturers must focus on reducing the energy impact of brick in ways that do not compromise its durability. This could be done by using renewable energy, including carbon-neutral sources of natural gas (e.g., biogas). Longer pre-trying times may reduce the energy required to fire bricks. Lighter-weight bricks may reduce the energy used in transportation (although this is a not a primary concern, as transportation energy was not found to be significant).

In addition, manufacturers should focus on brick's end-of-life trajectory. Following William McDonough and Michael Braungart's "cradle-to-cradle" philosophy,² manufacturers should look carefully at the material chemistry of bricks in order to create a product that can be safely returned to the biosphere at the end of its life. EIOLCA shows that there are currently toxic outputs resulting from metal additives—manufacturers should work to eliminate such toxins.

Finally, manufacturers could find ways to take back bricks and/or incorporate additional recycled material (mindful of any effects on durability).

ETHICS

Summary

Based upon injury, fatality, and wage data, brick bearing walls appear to be at least slightly exploitative throughout their life cycle, although likely less so than other building materials. The fatality rate is unacceptably high for several of its life cycle stages.

Recommendations for Designers

First, designers should work with clients to prioritize ethical impacts of buildings (in addition to environmental and economic impacts). Second, designers should seek out manufacturers who prioritize worker safety, pay fair wages, and provide good health benefits. Similarly, designers should look for contractors who emphasize safety, fair pay, and good benefits. These criteria could go a long way toward improving the ethical impacts of brick walls specifically, and construction more generally.

Recommendations for Manufacturers

Manufacturers must focus on improving worker safety—specifically on reducing injuries during brick manufacturing and fatalities during clay extraction. Manufacturers should also favor forms of transportation that reduce illness, injury, and fatality. 1. The Building Science Corporation (www. buildingscience.com) and the Brick Industry Association (www.gobrick.com) both provide excellent resources on detailing for durability.

2. See McDonough and Braungart, *Cradle to Cradle*.

BRICK LCA BIBLIOGRAPHY

- Amato, Rosa, et al. "Brick Manufacturing Process: Setting and Drying." Part of a website created for senior year architecture studio, University of Michigan, Winter 2003. http://www.umich. edu/~bricks/brickwebsite/setting_drying/setting_drying_ page4.htm (accessed 19 September 2010).
- Answers.com. "What is the Weight of a Red Clay Brick in Kilograms?" http://wiki.answers.com/Q/What_is_the_weight_of_a_red_ clay_brick_in_Kilograms (accessed 24 October 2010).
- Ask.com. "How Much Does a Pallet of Bricks Cost?" http://answers. ask.com/Business/Other/how_much_does_a_pallet_of_bricks_ cost (accessed 26 September 2010).
- Athena Sustainable Materials Institute. "The Impact Estimator for Buildings." http://www.athenasmi.org/tools/impactEstimator/ (accessed 2 December 2010).
- Athena Sustainable Materials Institute, with Morrison Hershfield Limited. "A Life Cycle Assessment Study of Embodied Effects for Existing Historic Buildings." A report prepared for Parks Canada (July 14, 2009). http://www.athenasmi.org/publications/docs/ Athena_LCA_for_Existing_Historic_Buildings.pdf (accessed 2 December 2010).
- Bajpai, Atish, et al. "A Comparative Life Cycle Assessment of a Wooden House and a Brick House." Royal Institute of Technology, Stockholm. http://www.infra.kth.se/fms/utbildning/lca/ project%20reports/Group%206%20-%20House.pdf (accessed 26 September 2010).
- BEES. See National Institute of Standards and Technology.
- Boral Bricks, Inc. "Building with Brick: Sustainable and Energy Efficient." White paper, December 2009. http://boralbricks.com/ images/Users/1/PastelCote/News/WhitePaperSustainable_BoralLetterhead.pdf (accessed 12 October 2010).
- Brick Industry Association. "Maintenance of Brick Masonry." Technical Notes on Brick Construction 46 (December 2005). http:// www.bia.org/bia/technotes/TN46.pdf (accessed 2 December 2010).
- ———. "Passive Solar Heating with Brick Masonry." http://www.gobrick.com/html/frmset_thnt.htm (accessed 2 December 2010).
- -----. "Sustainability and Brick." Technical Notes on Brick Construction 48 (June 2009). http://www.gobrick.com/BIA/technotes/TN48.pdf (accessed 12 October 2010).

- Brick Industry Association website. http://www.gobrick.com/ (accessed 2 December 2010).
- Building Science Corporate website. http://www.buildingscience. com/ (accessed 2 December 2010).
- Building Value. "Job Training." http://www.buildingvalue-cincy.org/ Job Training (accessed 2 October 2010).
- Calkins, Meg. Materials for Sustainable Sites. Hoboken, NJ: Wiley, 2009.
- Carnegie Mellon University, Green Design Institute. "About the EIO-LCA Method." http://www.eiolca.net/Method/index.html (accessed 12 December 2010).
- -----. "Approaches to Life Cycle Assessment." http://www.eiolca. net/Method/LCAapproaches.html (accessed 12 December 2010).
- ———. Economic Input-Output Life Cycle Assessment [EIOLCA] website. http://www.eiolca.net/index.html (accessed 24 October 2010).
- Covington Re-Use Center website. http://www.covingtonreusecenter.org/index.php (accessed 2 October 2010).
- CSGNetwork.com. "Brick Construction Calculator." http://www. csgnetwork.com/brickgeninfocalc.html (accessed 24 October 2010).
- EIOLCA. See Carnegie Mellon University, Green Design Institute.
- EnergyVortex.com. "Energy Dictionary: BTU, MBTU, MMBTU." http:// www.energyvortex.com/energydictionary/british_thermal_ unit (btu) mbtu mmbtu.html (accessed 24 October 2010).
- Engineering.com Library. http://www.engineering.com/Library/tabid/78/Default.aspx.
- Google Maps. http://www.google.com/maps.
- H. Hafner & Sons, Inc. "Cincinnati Dumpster Rental." http://www. hafners.com/cincinnati-landscape-services/dumpster-rental. html (accessed 2 October 2010).
- Hanson Brick and Tile. "Sustainable Development." http://www. hansonbrick.com/en/pdf/green/Sustainable-Development.pdf (accessed 12 October 2010).

- Howtopedia.org. "How to Measure the Energy Used to Fire Clay Bricks: Practical Guide for Brickmakers, Field-Workers and Researchers—Technical Brief." http://en.howtopedia.org/wiki/ How_to_Measure_the_Energy_Used_to_Fire_Clay_Bricks (accessed 24 October 2010).
- Lawrence Livermore National Laboratory. "Lawrence Livermore National Lab, Navistar Work to Increase Semi-Truck Fuel Efficiency." Press release, February 2010. https://www.llnl.gov/news/newsreleases/2010/NR-10-02-08.html (accessed 12 October 2010).
- Longworth Hall website. "A Bit of History." http://www.longworthhall.com/about.html (accessed 10 September 2010).
- Lstiburek, Joseph. "Increasing the Durability of Building Constructions." Building Science Digest 144, Building Science Corporation (December 2006). http://www.buildingscience.com/ documents/digests/bsd-144-increasing-the-durability-of-building-constructions/files/bsd-144 increasing-the-durability-ofbuilding-constructions.pdf (accessed 2 December 2010).
- Management Computer Controls, Inc. (MC2). "Estimators' Reference: Mortar Mixes." http://www.mc2-ice.com/support/estref/popular_conversion_files/masonry/mortar.htm (accessed 2 October 2010).
- Mavis, Jim. "Water Use in Industries of the Future: Mining Industry." Prepared under contract to Center for Waste Reduction Technologies for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program (July 2003). http://www1.eere.energy.gov/industry/mining/pdfs/water_use_mining.pdf (accessed 26 September 2010).
- McDonough, William, and Michael Braungart. Cradle to Cradle: Remaking the Way we Make Things. New York: North Point Press, 2002.
- National Institute of Standards and Technology [NIST]. "BEES (Building for Environmental and Economic Sustainability." http:// www.nist.gov/el/economics/BEESSoftware.cfm (accessed 2 December 2010).
- ------. BEES 4.0 Software documentation. "Generic Brick and Mortar"
- ------. BEES 4.0 Software documentation. "Generic Concrete Products with Portland Cement."

BRICK LCA BIBLIOGRAPHY (continued)

- National Mining Association (NMA). "Mining in North Carolina, 2004." http://www.nma.org/pdf/states/nc2004.pdf (accessed 26 September 2010).
- -----. "Mining in North Carolina, 2007." http://www.nma.org/pdf/ states/econ/nc.pdf (accessed 26 September 2010).
- National Register of Historic Places. "B&O Freight Terminal." http:// nrhp.focus.nps.gov/ (accessed 10 September 2010).
- North Carolina Department of Environment and National Resources. The Division of Land Resources. "Permitted Mines in North Carolina as of 27 August 2010." http://www.dlr.enr.state.nc.us/ pages/Permitted%20mines%2020100827/Permited%20active%20and%20inactive%20mines%2020100827.xls (accessed 25 September 2010).
- North Carolina Geological Survey [NCGS]. "Mineral Resources." http://www.geology.enr.state.nc.us/Mineral%20resources/mineralresources.html (accessed 25 September 2010).
- National Renewable Energy Laboratory [NREL]. U.S. Life-Cycle Inventory Database. http://www.nrel.gov/lci/database/default. asp (for module "Limestone, at mine;" accessed 26 September 2010).
- Pioneer Sand Company. "Flagstone Wholesale." http://www.pioneersand.com/wholesale/flagstone/flagstone.htm (accessed 12 October 2010).
- Quarry News. "Cincinnati Recycler Prefers Keestrack Destroyer." October 2009. http://www.guarrynews.com/ME2/Audiences/ dirmod.asp?sid=&nm=&type=Publishing&mod=Publications::A rticle&mid=8F3A7027421841978F18BE895F87F791&id=DE905 52AB49642A595B5AB4F4AE6CDFD&tier=4 (accessed 2 October 2010).
- Reade Advanced Materials. "Weight Per Cubit Foot and Specific Gravity." http://www.reade.com/Particle_Briefings/spec_gra2. html (accessed 2 October 2010).
- Rodrigue, Jean-Paul, Claude Comtois and Brian Slack. "Freight Transport Costs in Cents per Ton-Mile." From The Geography of Transportation Systems website. Hofstra University, Department of Global Studies & Geography (2009). http://people.hofstra. edu/geotrans/eng/ch3en/conc3en/modaltransportcosttonmile.html (accessed 2 October 2010).

- RSMeans CostWorks. Construction Estimate. http://www.meanscostworks.com/ (data for 0421 Brick Masonry, Structural Brick C652, Grade SW, incl. mortar; accessed 12 September 2010).
- ------. "Reference Tables: Clay Unit Masonry: Brick, Block & Mortar Quantities." http://www.meanscostworks.com/MyEstimate/..% 5CReferences%5CUNIT%5CREFPDF%5CR04211050.pdf (accessed 12 September 2010).
- ——. "Reference Tables: Crews." http://www.meanscostworks. com/References/Unit/RefPDF/crewstd.pdf (accessed 12 September 2010).
- U.S. Bureau of Labor Statistics [U.S. BLS]. "2009 Census of Fatal Occupational Injuries (CFOI) Charts." Preliminary data. http://www. bls.gov/iif/oshwc/cfoi/cfch0008.pdf (accessed 18 September 2010).
- -----. "Incidence Rates of Nonfatal Occupational Injuries and Illnesses by Industry and Case Types, 2008." http://www.bls.gov/ iif/oshwc/osh/os/ostb2071.pdf (accessed 26 September 2010).
- -----. "Incidence Rate and Number of Nonfatal Occupational Injuries by Industry and Ownership, 2008." http://www.bls.gov/iif/ oshwc/osh/os/ostb2063.pdf (accessed 12 October 2010).
- ———. May 2009 Occupational Employment and Wage Estimates: Metropolitan Area Cross-Industry Estimates. ftp://ftp.bls.gov/ pub/special.requests/oes/oesm09ma.zip (accessed 2 December 2010).
- -----. "Occupational Employment and Wages, May 2009." http:// bls.gov/ (accessed 12 September 2010).
- U.S. Department of Energy [U.S. DOE]. Office of Energy Efficiency and Renewable Energy. Industrial Technologies Program. Industrial Assessment Centers Database. http://iac.rutgers. edu/database/ (assessments #UA0022 [http://iac.rutgers.edu/ database/assessment/UA0022], #NC0352 [http://iac.rutgers. edu/database/assessment/NC0352], and #CO0578 [http://iac. rutgers.edu/database/assessment/CO0578]; accessed 26 September 2010).
- efficients." http://www.eia.doe.gov/oiaf/1605/coefficients.html (accessed 19 September 2010).

- U.S. Environmental Protection Agency [U.S. EPA]. "GHG Emission Factors: eGRID2007 Version 1.1 Year 2005 GHG Annual Output Emission Rates." http://cfpub.epa.gov/egridweb/ghg.cfm (accessed 19 September 2010).
- -----. "Emission Facts: Calculating Emissions of Greenhouse Gases: Key Facts and Figures." February 2005. http://www.epa. gov/otaq/climate/420f05003.htm (accessed 12 October 2010).
- -----. "Mobile Source Air Toxics." http://www.epa.gov/otag/toxics. htm (accessed 2 October 2010).
- -----. "Waste Reduction Model (WARM) Calculator." http://www. epa.gov/climatechange/wycd/waste/calculators/Warm_home. html (accessed 2 October 2010).
- U.S. Geological Survey [USGS]. Mineral Commodity Summary: Clays (January 2010). Prepared by Robert L. Virta. http://minerals. usgs.gov/minerals/pubs/commodity/clays/mcs-2010-clays.pdf (accessed 25 September 2010).
- ———. 2008 Minerals Yearbook: Clay and Shale [Advance Release], by Robert L. Virta. September 2010. http://minerals.usgs.gov/ minerals/pubs/commodity/clays/myb1-2008-clays.pdf (accessed 25 September 2010).
- U Ship website. Price Estimator. http://www.uship.com/price_estimator.aspx (accessed 12 October 2010).
- Virta, Robert L. See U.S. Geological Survey.

BRICK LCA APPENDIX A: DATA & SOURCES Overall LCA Data

Life Cycle Assessment: Brick Bearing Wall, Longworth Hall, Cincinnati, Ohio

Carl S. Sterner

		Extraction / Harvest		Manufacturing Shipping /		Shipping / T	ransport	Construct	Construction		ations	End of Life (Landfill)		TOTALS
Metric	Units	Quantity	Source	Quantity	Source	Quantity	Source	Quantity	Source	Quantity	Source	Quantity	Source	Quantity
ECONOMIC														
Material cost	\$ / sq. ft. wall	NO DATA		NO DATA		NO DATA		\$2,90	[1]		///////////////////////////////////////	NO DATA		
	\$ / ton	NO DATA		NO DATA		NO DATA		\$123,82	calc.			NO DATA		
Labor cost	\$ / sg. ft. wall	NO DATA		NO DATA		NO DATA		\$6.08	[1]			NO DATA		
	\$ / ton	NO DATA		NO DATA		NO DATA		\$259,60	calc.			NO DATA		
Total cost	\$ / sg. ft. wall	\$1.05	calc.	\$2.47	calc.	\$1.53	calc.	\$12.34	[1]			\$0.28	calc.	\$17.67
	\$ / ton	\$44.81	[14]	\$105.62	calc.	\$65.16	[24,25]	\$526.88	calc.			\$11.84	[32]	\$754.31
ENVIRONMENTAL														
Emissions to air			777777	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	//////		77777777777777777777777777777777777777			×/////////////////////////////////////	///////////////////////////////////////			
Total GHG emissions	lbs CO2e / ton	0.1022	[18]	786.07	calc.	37.88	[26.27.28]	NO DATA				0.0441	[33]	824.10
GHG emissions from electricity	lbs CO2e / ton		dilla -	633.53	[22]			NO DATA				NO DATA	[00]	
GHG emissions from nat, gas	lbs CO2e / ton			152.54	[23]			NO DATA				NO DATA		
Energy use	MMBTU / ton	NO DATA	******	1.6667	[20]	NO DATA		NO DATA				NO DATA		
Flectricity	MMBTU / ton	NO DATA		0.1207	[20]	NO DATA		NO DATA				NO DATA		
Natural gas	MMBTU / ton	NO DATA		1.3040	[20]	NO DATA		NO DATA				NO DATA		
Water use	gal / ton	2000	[19]	NO DATA	[20]	NO DATA		100	est.			NO DATA		2100
ETHICAL														Avoragos
Injury / illness rate	cases per 100 employees	3.4	[16]	7.0	[16]	55	[16]	4.6	[16]			55	[16]	5 2
		01.0%	[10]	180.2%	[16]	148 6%	[10]	124 306	[16]			148.6%	[10]	140 5%
Estality rate	70 por 100,000 omployeos	91.9%		109.270	[21]	140.070	[21]	10.2	[10]			140.0%	[2]	15 24
		204 004	[1/]	2.2 66 70/	[31]	10.3 EE4 E04	[31]	10.J	[2]			762.60/		15.34
		V/////////////////////////////////////										X/////////////////////////////////////		(//////////////////////////////////////
Mean	\$ / yr	¢/1 922	calc	¢31 677	calc	¢30,180	[20]	\$50,110	[2]			¢37.200	[2]	\$40.036
Modian	s / yi	¢30,077	calc.	¢31,077	calc.	\$35,100 \$37,770	[29]	¢51 070	[2]			\$37,230 NO DATA	[2]	\$40,030 \$40,075
% of local avg. wago		×1////////////////////////////////////		\$51,405				\$51,070 ///////////////////////////////////		XIIIII				
Moan	·/////////////////////////////////////	<u>/////////////////////////////////////</u>	Calc	75%	/////// calc	4/////////////////////////////////////	[20]	118%	<u>////////////////////////////////////</u>			<u>88 1%</u>	[<u>///////</u>	05.5%
Modian		121%		7,5%	calc.	97.2%	[29]	155%	[2]					122.6%
Median	70	12170		90%	Calc.	110.770	[29]	155%	[2]			NO DATA		122.0%
-							- ·							6
Sources							Conversions							Source
[1] R.S. Means (www.meanscostwor	rks.com)						1 sq. ft. wall	:	=	6	27 bricks (\	waste not included)		[8]
[2] U.S. Bureau of Labor Statistics (www.bls.gov) [cfch0008.pdf]		100				1 sq. ft. wall	:	=	7.0	09 bricks (i	including waste)		[1]
[3] Meg Calkins, Materials for Susta	<i>inable Sites</i> (Hoboken, NJ: John V	Viley & Sons, 2009	, 186.				1 brick	:	=	0.0377604	42 c.f. brick	K		calculated
[4] http://www.longworthhall.com/a	about.html						1 sq. ft. wall	:	=	0.267721	35 c.f. brick	KS		calculated
[5] http://wiki.answers.com/Q/Wha	t_is_the_weight_of_a_red_clay_b	prick_in_Kilograms					1 c.f. wall	-	=	18.8	81 bricks			calculated
[6] http://en.howtopedia.org/wiki/H	low_to_Measure_the_Energy_Use	ed_to_Fire_Clay_Bri	cks				1 c.f. brick (no	mortar)	=	26.4	48 bricks			calculated
[7] http://www.reade.com/Particle_	Briefings/spec_gra2.html						1 brick	:	=		3 kg			[5],[6]
[8] http://www.csgnetwork.com/bri	ckgeninfocalc.html						1 c.f. bricks	:	=	12	20 lbs			[7]
[9] http://www.mc2-ice.com/suppor	rt/estref/popular_conversion_files	/masonry/mortar.h	tm				1 short ton	:	=	200	00 lbs			given
[10] http://www.umich.edu/~bricks	/brickwebsite/setting_drying/sett	ing_drying_page3.	ntm				1 ton	:	=	16.0	67 c.f. brick	K		calculated
[11] http://www.engineering.com/c	ontent/ContentDisplay?contentId	=41005029; as quo	ted in Atis	sh Bajpai, et al.,	"A Comp	arative Life Cycle	1 ton brick	:	=	62.2	25 s.f. wall			calculated
[12] http://wiki.answers.com/Q/Hov	w_many_bricks_in_a_pallet_of_br	rick					1 ton	:	=	441.3	38 bricks			calculated
[13] http://answers.ask.com/Business/Other/how_much_does_a_pallet_of_bricks_cost													5 / J	
[14] Robert L. Vitra, "2008 Minerals	Yearbook: Clay and Shale [Advar	nce Release]" (U.S.	Geologica	I Survey, Septer	1ber 2010),	1000 bricks	:	=	10	1.3 c.f. mor	tar (waste included))	[1]
http://minerals.usgs.gov/minerals/pubs/commodity/clays/myb1-2008-clays.pdf						1 sq. ft. wall	:	=	7.0	09 bricks (i	including waste)		[1]	
[15] National Mining Association (N	MA), "Mining in North Carolina, 20	007" (http://www.n	ma.org/pc	if/states/econ/nc	.pdf)		1 sq. ft. wall	:	=	0.10	UY C.T. mort	tar		calculated
[16] U.S. Bureau of Labor Statistics	, "Incidence rates of nonfatal occu	upational injuries ar	nd illnesse	s by industry and	d case ty	pes, 2008"	1 c.t. mortar	:	=	13	35 lbs			[7]
(http://www.bls.gov/iif/oshwc/osh/c	os/ostb2071.pdf)						1 m³ mortar	:	=	180	60 kg			[11]
							1 ton	:	=	14.8	81 c.f. mor	tar		calculated
[18] U.S. Life-Cycle Inventory Data	base, "Limestone, at mine," http:/	//www.nrel.gov/lci/	database/	default.asp (acce	essed 26	September 2010)	1 ton mortar	:	=	135.9	92 s.f. wall			calculated
[19] Jim Mavis, "Water Use in Indus	tries of the Future," (U.S. Dept of	Energy Office of Er	nergy Effic	iency and Renew	vable Ene	rgy, Industrial	1 ton	:	=	42.	70 s.f. wall	(brick + mortar)		calculated
Technologies Program, July 2003), h	http://www1.eere.energy.gov/indu	ustry/mining/pdfs/v	vater_use	_mining.pdf.			1 kWh	:	=	3412.	14 BTUs	. ,		[21]
[20] U.S. Dept of Energy, Energy Ef	ficiency and Renewable Energy, Ir	ndustrial Technologi	es Prograi	n, "IAC Assessm	ent Stati	stics" (2010)	1 MMBTU	:	=	1,000,00	00 BTUs			[21]

		Extraction / H	arvest	Manufactur	ing	Shipping / T	ransport	Construct	tion	Operations	End of Life (Landfill)	ΤΟΤΑΙ
Metric	Units	Quantity	Source	Quantity	Source	e Quantity	Source	Quantity	Source	Quantity Source	Quantity Source	Quanti
ECONOMIC												
Material cost	\$ / sg. ft. wall	NO DATA		NO DATA		NO DATA		\$2.90	[1]		NO DATA	
	\$ / ton	NO DATA		NO DATA		NO DATA		\$123.82	calc.		NO DATA	
Labor cost	\$ / sq. ft. wall	NO DATA		NO DATA		NO DATA		\$6.08	[1]		NO DATA	
	\$ / ton	NO DATA		NO DATA		NO DATA		\$259.60	calc.		NO DATA	
Total cost	\$ / sq. ft. wall	\$1.05	calc.	\$2.47	calc.	\$1.53	calc.	\$12.34	[1]		\$0.28 calc.	\$17.6
	\$ / ton	\$44.81	[14]	\$105.62	calc.	\$65.16	[24,25]	\$526.88	calc.		\$11.84 [32]	\$754.3
ENVIRONMENTAL												
Emissions to air									7777777			
Total GHG emissions	lbs CO2e / ton	0.1022	[18]	786.07	calc.	37.88	[26.27.28]	NO DATA	• • • • • • • • • • • • • • • •		0.0441 [33]	824.
GHG emissions from electricity	lbs CO2e / ton		atta a	633.53	[22]			NO DATA			NO DATA	
GHG emissions from nat. gas	lbs CO2e / ton			152.54	[23]			NO DATA			NO DATA	
Energy use	MMBTU / ton	NO DATA	*******	1.6667	[20]	NO DATA	*********	NO DATA			NO DATA	
Flectricity	MMBTU / ton	NO DATA		0.1207	[20]	NO DATA		NO DATA			NO DATA	
Natural gas	MMBTU / ton	NO DATA		1.3040	[20]	NO DATA		NO DATA			NO DATA	
Water use	gal / ton	2000	[19]	NO DATA	[=0]	NO DATA		100	est.		NO DATA	210
ETHICAL												Average
Injury / illness rate	cases per 100 employees	3.4	[16]	7.0	[16]	5.5	[16]	4.6	[16]		5.5 [16]	
relative to all occupations		01.0%	[16]	180.2%	[16]	148 6%	[16]	124 306	[16]		148.6% [16]	140 5
Fatality rate	70 por 100,000 omployeos	12.7	[17]	109.270	[21]	19.0 %	[21]	10.2	[10]			140.5
		384 806	[17]	66 7%	[31]	554 5%	[31]	554 5%	[2]		763.6%	15.
Annual wago (Cincinnati)	<u> ""</u>	///////////////////////////////////////						///////////////////////////////////////				1//////////////////////////////////////
Mean	¢ / vr	¢41 922	calc	\$31.677	calc	\$39,180	[20]	\$50,110	[2]		\$37,290 [2]	\$40.0
Median	¢/yr	¢30.077	calc.	¢31,077	calc.	¢37,770	[20]	¢51 070	[2]			¢40.0
% of local avg. wage				×/////////////////////////////////////					un thun			///////////////////////////////////////
Moan	0/2	00%	Calc	75%	////// calc	27 2%	//////////////////////////////////////	118%	//////// [2]		88 106 [2]	05.5
Modian	90	1210/	calc.	96%	calc.	118 7%	[29]	110 %	[2]			122.6
riculari	70	12170	calc.	9070	calc.	110.7 /0	[29]	15570	[4]	×/////////////////////////////////////	NO DAIA	122.0
Sources							Conversion					Course
Sources								1 <u>5</u>		C 27 brieke (w		Source
[1] R.S. Means (www.meanscostwor	rks.com)						1 sq. it. wai	1	=	5.27 DFICKS (Wa	aste not included)	[8]
[2] U.S. Bureau of Labor Statistics (www.bis.gov) [cichouo8.pdi]	Wiley & Came 2000	100				1 Sq. rt. wai	1	=	7.09 DFICKS (III)	cluding waste)	
[3] Meg Calkins, <i>Materials for Susta</i>	INADIE SILES (HODOKEN, NJ: JOHN	wiley & Sons, 2009), 186.						=	0.03776042 C.I. DFICK		calculated
[4] http://www.iongworthnall.com/a	about.ntml	huidt in Kilderunge					1 sq. π. wai	I	=	0.26//2135 C.f. Dricks		calculated
[5] http://wiki.answers.com/Q/wha	t_is_the_weight_or_a_red_clay_	Drick_in_Kilograms					1 c.r. wall	(=	18.81 DFICKS		calculated
[6] http://en.nowtopedia.org/wiki/H	low_to_Measure_the_Energy_Us	sed_to_Fire_Clay_Br	ICKS				1 C.T. Drick ((no mortar)	=	26.48 Dricks		calculated
[7] http://www.reade.com/Particle_	Briefings/spec_graz.ntml								=	3 Kg		[5],[6]
[8] http://www.csgnetwork.com/bri	ckgeninfocalc.html	, , , , ,					1 c.f. bricks		=	120 lbs		[/]
[9] http://www.mc2-ice.com/suppor	rt/estref/popular_conversion_file	es/masonry/mortar.r	itm				1 short ton		=	2000 Ibs		given
[10] http://www.umich.edu/~bricks	/brickwebsite/setting_drying/set	tting_drying_page3.	ntm				1 ton		=	16.67 C.f. Drick		calculated
[11] http://www.engineering.com/c	ontent/ContentDisplay?contentIo	a=41005029; as qu	oted in A	tish Bajpai, et al., '	'A Com	parative Life Cycle /	I ton brick		=	62.25 s.f. wall		calculated
[12] http://wiki.answers.com/Q/Hov	w_many_bricks_in_a_pallet_of_l	Drick					1 ton		=	441.38 bricks		calculated
[13] http://answers.ask.com/Busine	ess/Other/now_much_does_a_pa	allet_of_bricks_cost	<u> </u>									F 4 T
[14] Robert L. Vitra, "2008 Minerals Yearbook: Clay and Shale [Advance Release]" (U.S. Geological Survey, September 2010),							1000 bricks		=	10.3 c.f. morta	ir (waste included)	[1]
http://minerals.usgs.gov/minerals/p	pubs/commodity/clays/myb1-200	08-clays.pdf					1 sq. ft. wal		=	7.09 bricks (in	cluding waste)	[1]
[15] National Mining Association (N	MA), "Mining in North Carolina, 2	2007" (http://www.r	ma.org/	par/states/econ/nc	.pdf)		1 sq. ft. wal	11	=	0.109 c.f. morta	ir	calculated
[16] U.S. Bureau of Labor Statistics	, "Incidence rates of nonfatal occ	cupational injuries a	nd illnes	ses by industry and	l case t	ypes, 2008"	1 c.f. morta	r	=	135 lbs		[7]
(http://www.bls.gov/iif/oshwc/osh/c	os/ostb2071.pdf)						1 m ³ morta	r	=	1860 kg		[11]
[17] U.S. BUREAU OF LADOR STATISTICS	(www.bis.gov) [crcnuuu8.pdf]						1 ton		=	14.81 c.f. morta	ır	calculated
[18] U.S. Life-Cycle Inventory Data	base, "Limestone, at mine," http	://www.nrel.aov/lci/	database	e/default.asp (acces	ssed 26	September 2010)	1 ton morta	r	=	135.92 s.f. wall		calculated
[19] Jim Mayis, "Water Use in Indus	stries of the Future." (U.S. Dept of	of Energy Office of F	nerav Ff	ficiency and Renew	able En	ergy, Industrial	1 ton		=	42.70 s.f. wall (brick + mortar)	calculated
Technologies Program, July 2003), h	http://www1.eere.energy.gov/ind	dustry/mining/pdfs/	water us	se mining.pdf.		5,, 5,,	1 kWh		=	3412.14 BTUs	,	[21]
[20] U.S. Dept of Energy, Energy Ef	ficiency and Renewable Energy,	Industrial Technolog	ies Progr	ram, "IAC Assessme	ent Sta	tistics" (2010)	1 MMBTU		=	1,000,000 BTUs		[21]

BRICK LCA APPENDIX A: DATA & SOURCES Overall LCA Data (continued)

Sources	Conversions		
(http://iac.rutgers.edu/database/statistics/?STATE=&CENTER=&YEAR_limit=%3C%3D&YEAR=2010&SIC=&NAICS=327121&search=Search)	1 metric ton	=	1.1023113 tons
[21] http://www.energyvortex.com/energydictionary/british_thermal_unit_(btu)mbtummbtu.html			
[22] U.S. EPA, http://cfpub.epa.gov/egridweb/ghg.cfm	Longworth Hall	=	4,250,000 bricks
[23] U.S. Energy Information Administration, http://www.eia.doe.gov/oiaf/1605/coefficients.html	Longworth Hall	=	160481.77 c.f. bricks
[24] http://people.hofstra.edu/geotrans/eng/ch3en/conc3en/modaltransportcosttonmile.html	Longworth Hall	=	9628.91 tons brick
[25] U Ship Price Estimator, http://www.uship.com/price_estimator.aspx?v=0&z1=40380&z2=45220&w=12000&c=417&s=150	Longworth Hall	=	4410.35 tons mortar
[26] U.S. EPA, http://www.epa.gov/otaq/climate/420f05003.htm			
[27] Lawrence Livermore National Laboratory, https://www.llnl.gov/news/newsreleases/2010/NR-10-02-08.html			
[28] http://www.pioneersand.com/wholesale/flagstone/flagstone.htm	1 s.f. wall	=	0.109 c.f. morta
[29] U.S. Bureau of Labor Statistics, http://data.bls.gov:8080/oes/datatype.do	1 s.f. wall	=	0.26772135 c.f. brick
[30] U.S. Bureau of Labor Statistics, http://www.bls.gov/iif/oshwc/osh/os/ostb2063.pdf	TOTAL	=	0.37672135
[31] U.S. Bureau of Labor Statistics, "Census of Fatal Occupational Injuries Charts, 1992-2009,"			
http://www.bls.gov/iif/oshwc/cfoi/cfch0008.pdf	1 s.f. wall	=	0.0073575 tons mor
[32] H. Hafner & Sons, http://www.hafners.com/cincinnati-landscape-services/dumpster-rental.html	1 s.f. wall	=	0.01606328 tons bric
[33] U.S. EPA WARM calculator	TOTAL	=	0.02342078 tons

Summary Table (Source for Charts)

	ECONOMIC		ENVIRONMENTAL			ETHICAL				
	Cost		GHG Emissio	ns	Water Use		Injury / Illness rate	Fatality Rate	Mean Annual Wage	Median Annual Wage
			lbs CO ₂ -e per		gallons per		Cases per	Per 100,000	Cincinnati;	Cincinnati;
	US \$ per ton)	% of total	ton	% of total	ton	% of total	100 emp.	emp.	2010 US \$	2010 US \$
Extraction	\$45	6%	0.10	0%	2000	95%	3.4	12.7	\$41,922	\$39,977
Manufacturing	\$106	14%	786.07	95%	0	0%	7.0	2.2	\$31,677	\$31,483
Construction	\$527	70%	0.00	0%	100	5%	4.6	18.3	\$50,110	\$51,070
Operation										
End of Life	\$12	2%	0.04	0%	0	0%	5.5	25.2	\$37,290	
Transportation	\$65	9%	37.88	5%	0	0%	5.5	18.3	\$39,180	\$37,770
TOTAL / AVG.	\$754	100%	824.10	100%	2100	100%	3.7	3.3	\$42,340	\$32,950

Source

given

[4] calculated calculated calculated

28.93%	mortar by volume
71.07%	brick by volume
100.00%	

31.41% mortar by weight 68.59% brick by weight

BRICK LCA APPENDIX A: DATA & SOURCES Extraction Data

Extraction of Common Clay

Economic data from USGS (see reference [f] below), based on all domestic clay manufacturing (including non-brick uses, which account for roughly 54% of clay produced). Emission data uses limestone extraction as an approximation (clay data was unavailable; data from the U.S. LCI database. Water use is a rough estimate for clay mining, from a report to the Dept. of Energy by CH2M Hill (see reference [h] below). Ethical data from the U.S. Bureau of Labor Statistics, as follows: wage data based upon "Nonmetallic Mineral Mining and Quarrying," NAICS code 212300; fatality data based upon general "mining" sector data (see reference [e] below); injury/illness data based upon "Clay and ceramic and refractory minerals mining" (see reference [a] below).

		Overall Industry Data
Metric	Units	Quantity Source
ECONOMIC		
Material cost	\$ / ton	
Labor cost	\$ / ton	
Total cost	\$ / ton	
Total revenue	\$ / ton	\$44.81 [f]
ENVIRONMENTAL		
Emissions to air	Tons / ton	
Total GHG emissions	lbs CO2e / ton	0.1022 [g]
Energy use	MMBTU / ton	
Electrical	MMBTU / ton	
Natural Gas	MMBTU / ton	
Water use	gal / ton	2000 [h]
ETHICAL		
Injury / illness rate	cases per 100 employees	3.4 [a]
relative to all occupations	%	91.9%
Fatality rate	per 100,000 / yr	12.7 [e]
relative to all occupations	%	384.8%
Annual wage (Cincinnati)		
Mean	\$ / yr	\$41,922 calc.
Median	\$ / yr	\$39,977 calc.
% of local avg. wage		
Mean	%	99% calc.
Median	%	121% calc.

Sources

[a] U.S. Bureau of Labor Statistics, "Incidence rates of nonfatal occupational injuries and illnesses by industry and case types, 2008" (http://www.bls.gov/iif/oshwc/osh/os/ostb2071.pdf) [b] NOT USED

[c] National Mining Association (NMA), "Mining in North Carolina, 2007" (http://www.nma.org/pdf/states/econ/nc.pdf) [d] NOT USED

[e] U.S. Bureau of Labor Statistics (www.bls.gov) [cfch0008.pdf]

[f] Robert L. Vitra, "2008 Minerals Yearbook: Clay and Shale [Advance Release]" (U.S. Geological Survey, September 2010), http://minerals.usgs.gov/minerals/pubs/commodity/clays/myb1-2008-clays.pdf [g] U.S. Life-Cycle Inventory Database, "Limestone, at mine," http://www.nrel.gov/lci/database/default.asp (accessed 26 September 2010)

[h] Jim Mavis, "Water Use in Industries of the Future," (U.S. Dept of Energy Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, July 2003),

[i] U.S. Bureau of Labor Statistics, http://www.bls.gov/oes/current/naics4_327100.htm [j] U.S. Bureau of Labor Statistics, May 2009 Occupational Employment and Wage Estimates: Metropolitan Area Cross-Industry Estimates, ftp://ftp.bls.gov/pub/special.requests/oes/oesm09ma.zip

TOTAL COST - EXTRACTION

	Units	2006	2008 Source
Quantity	metric tons	36,700,000	33,200,000 [f]
Value	dollars	\$1,750,000,000	\$1,640,000,000 [f]
Unit Value	per metric ton	\$47.68	\$49.40 calculation
Unit Value	per short ton	\$43.26	\$44.81 calculation
Conversions			
1 metric ton	=	1.1023113 s	short tons
1 kg	=	0.001 r	metric tons
1 kg	=	2.2046226	bs

GHG EMISSIONS / CONVERSIONS

		Units	Source
1kg limestone	=	0.0000511 kg CO2-e	[g]
1 metric ton	=	0.0511 kg CO2-e	calculation
1 short ton	=	0.046357141 kg CO2-e	calculation
1 short ton	=	0.1022 lbs CO2-e	calculation

AVERAGE WAGES - EXTRACTION

AVERAGE WAGES - EXTRACTION					1			1	
			% of Total Industry						
			(Nonmetallic	Mean					
			Mineral Mining and	Annual	Weighted Mean		Weighted Mean		Wei
			Ouarrving, NAICS	Wage	Annual Wage	Mean Annual Wage	Annual Wage	Median Annual Wage	
			212300) (source	(national)	(national)	(Cincinnati) (source	(Cincinnati)	(Cincinnati) (source	
SOC Code Number	Occupation	# (source [i])	[i])	(source [i])	(calculated)	〔j])	(calculated)	([i])	
MANAGEMENT OCCUPATIONS									
11-1011	Chief Executives	210	0.21%	\$176 130	\$36 987 300	\$172 730	\$36 273 300	\$172 730	
11-1021	General and Operations Mana	1.910	1.95%	\$99,940	\$190,885,400	\$111,400	\$212,774,000	\$101,980	\$
11-2022	Sales Managers	140	0.14%	\$99.650	\$13,951,000	\$114 620	\$16,046,800	\$101 390	4
11-3031	Financial Managers	180	0.18%	\$93,620	\$16.851.600	\$109.240	\$19.663.200	\$99,890	
11-3051	Industrial Production Manager	550	0.56%	\$86,150	\$47,382,500	\$96.290	\$52,959,500	\$88.020	
11-3061	Purchasing Managers	40	0.04%	\$80,390	\$3,215,600	\$91,560	\$3,662,400	\$87,490	
11-3071	Transportation, Storage, and [50	0.05%	\$96,810	\$4,840,500	\$81,940	\$4,097,000	\$77,560	
11-9021	Construction Managers	200	0.20%	\$93,910	\$18,782,000	\$98,260	\$19,652,000	\$85,600	
11-9041	Engineering Managers	100	0.10%	\$110,090	\$11,009,000	\$122,700	\$12,270,000	\$114,330	
11-9199	Managers, All Other	130	0.13%	\$78,890	\$10,255,700	\$108,120	\$14,055,600	\$102,910	
BUSINESS AND FINANCIAL OCCUPATI	ONS								
13-1023	Purchasing Agents, Except Wh	250	0.26%	\$51,300	\$12,825,000	\$56,340	\$14,085,000	\$53,680	
13-1041	Compliance Officers, Except A	70	0.07%	\$55,430	\$3,880,100	\$54,970	\$3,847,900	\$50,410	
13-1051	Cost Estimators	90	0.09%	\$53,560	\$4,820,400	\$63,440	\$5,709,600	\$59,780	
13-1073	Training and Development Spe	40	0.04%	\$60,570	\$2,422,800	\$53,060	\$2,122,400	\$50,050	
13-1079	Human Resources, Training, a	60	0.06%	\$53,040	\$3,182,400	\$52,440	\$3,146,400	\$49,580	
13-1199	Business Operations Specialist	80	0.08%	\$54,280	\$4,342,400	\$61,170	\$4,893,600	\$57,050	
13-2011	Accountants and Auditors	410	0.42%	\$68,290	\$27,998,900	\$63,950	\$26,219,500	\$57,530	
COMPUTER AND MATHEMATICAL SCIE	NCE OCCUPATIONS								
15-1041	Computer Support Specialists	30	0.03%	\$48,140	\$1,444,200	\$44,780	\$1,343,400	\$42,240	
15-1071	Network and Computer Syster	40	0.04%	\$62,930	\$2,517,200	\$64,650	\$2,586,000	\$63,940	
ARCHITECTURE AND ENGINEERING O	CCUPATIONS								
17-1022	Surveyors	40	0.04%	\$52,400	\$2,096,000	\$55,770	\$2,230,800	\$53,640	
17-2041	Chemical Engineers	30	0.03%	\$92,910	\$2,787,300	\$89,800	\$2,694,000	\$81,210	
17-2051	Civil Engineers	40	0.04%	\$66,580	\$2,663,200	\$76,940	\$3,077,600	\$74,130	
17-2081	Environmental Engineers	60	0.06%	\$74,700	\$4,482,000	\$89,480	\$5,368,800	\$84,560	
17-2111	Health and Safety Engineers,	40	0.04%	\$79,600	\$3,184,000	\$74,580	\$2,983,200	\$70,820	
17-2112	Industrial Engineers	210	0.21%	\$71,350	\$14,983,500	\$76,380	\$16,039,800	\$73,660	
17-2141	Mechanical Engineers	40	0.04%	\$72,770	\$2,910,800	\$76,120	\$3,044,800	\$69,850	
17-2151	Mining and Geological Engine	310	0.32%	\$72,040	\$22,332,400	\$78,510	\$24,338,100	\$76,070	
17-2199	Engineers, All Other	40	0.04%	\$57,240	\$2,289,600	\$78,510	\$3,140,400	\$76,070	
17-3026	Industrial Engineering Technic	50	0.05%	\$48,700	\$2,435,000	\$48,230	\$2,411,500	\$47,900	
LIFE, PHYSICAL SCIENCE, AND SOCIA	L SCIENCE OCCUPATIONS	570	0.500/	+ 45 460	+25 012 200	+ 42, 220	+24 420 400	± 44,000	
19-4031	Chemical lechnicians	570	0.58%	\$45,460	\$25,912,200	\$42,330	\$24,128,100	\$41,000	
19-4099	Life, Physical, and Social Scief	40	0.04%	\$42,270	\$1,690,800	\$42,990	\$1,719,600	\$39,430	
HEALTHCARE PRACTITIONER AND TEC	CHNICAL OCCUPATIONS								
29-9011	Occupational Health and Safet	130	0.13%	\$60,620	\$7,880,600	\$68,190	\$8,864,700	\$66,410	
PROTECTIVE SERVICE OCCUPATIONS									
33-9032	Security Guards	70	0.07%	\$23,170	\$1,621,900	\$26,520	\$1,856,400	\$23,120	
BUILDING AND GROUNDS CLEANING	AND MAINTENANCE OCCUPATIONS								
37-2011	Janitors and Cleaners, Except	190	0.19%	\$26,310	\$4,998,900	\$24,140	\$4,586,600	\$22,260	
37-3011	Landscaping and Groundskeer	110	0.11%	\$24,500	\$2,695,000	\$24,170	\$2,658,700	\$21,980	
SALES AND RELATED OCCUPATIONS									
41-2031	Retail Salespersons			\$26,070		\$24,700	\$0	\$19,640	

)	Weighted Median Annual Wage (Cincinnati) (calculated)
))))))	\$36,273,300 \$194,781,800 \$14,194,600 \$17,980,200 \$48,411,000 \$3,499,600 \$3,878,000 \$17,120,000 \$11,433,000 \$13,378,300
))))	\$13,420,000 \$3,528,700 \$5,380,200 \$2,002,000 \$2,974,800 \$4,564,000 \$23,587,300
)	\$1,267,200 \$2,557,600
))))))	\$2,145,600 \$2,436,300 \$2,965,200 \$5,073,600 \$2,832,800 \$15,468,600 \$2,794,000 \$23,581,700 \$3,042,800 \$2,395,000
)	\$23,370,000 \$1,577,200
)	\$8,633,300
)	\$1,618,400
)	\$4,229,400 \$2,417,800
)	\$0

41-3099	Sales Representatives, Service	100	0.10%	\$63,880	\$6,388,000	\$54,080	\$5,408,000	\$46,060
41-4012	Sales Representatives, Wholes	1,150	1.17%	\$57,440	\$66.056.000	\$67,140	\$77,211,000	\$55.850
		-,		+ • • • • • • •	+ , ,	+ • • 7 = • •	+ · · / / • • •	+,
OFFICE AND ADMINISTRATIVE S	SUPPORT OCCUPATIONS							
43-1011	First-Line Supervisors/Manage	610	0.62%	\$48,290	\$29,456,900	\$48,990	\$29,883,900	\$46.050
43-3021	Billing and Posting Clerks and	80	0.08%	\$28 320	\$2,265,600	\$32 370	\$2 589 600	\$31 620
43-3031	Bookkeeping Accounting and	1 390	1 42%	\$33,810	\$46,995,900	\$34,730	\$48,274,700	\$33,810
43-3051	Payroll and Timekeening Clerk	190	0 10%	¢35,010	\$6 672 800	¢36,360	¢6 908 400	\$35,010 \$36,040
42 4051	Customer Service Representat	220	0.1970	#35,120 #25,000	\$0,072,000 ¢8 257 000	#20,300 #21,200	\$0,900, 4 00 ¢7 217 400	\$30,0 1 0 \$30,450
43-4031	Order Clarks	230	0.23%	\$33,900 ¢29,260	\$8,237,000	\$31,300 ¢21,200	\$7,217,400 ¢1 E61 000	\$29,430 ¢20.090
43-4131		50	0.03%	\$20,200 #40 F10	\$1,413,000	\$31,220 \$37,520	\$1,301,000	\$30,080
43-4101	Ruman Resources Assistants,	100	0.00%	\$40,510 ¢25 520	\$2,430,600	\$37,530	\$2,251,600	\$30,100
43-41/1		190	0.19%	\$25,530	\$4,850,700	\$23,820	\$4,525,800	\$23,320
43-5032	Dispatchers, Except Police, Fir	660	0.67%	\$37,430	\$24,703,800	\$38,260	\$25,251,600	\$35,830
43-5061	Production, Planning, and Exp	100	0.10%	\$45,040	\$4,504,000	\$40,700	\$4,070,000	\$38,540
43-50/1	Shipping, Receiving, and Iraff	270	0.28%	\$32,900	\$8,883,000	\$29,990	\$8,097,300	\$28,990
43-5081	Stock Clerks and Order Fillers	140	0.14%	\$35,180	\$4,925,200	\$24,250	\$3,395,000	\$21,330
43-5111	Weighers, Measurers, Checker	1,260	1.29%	\$29,990	\$37,787,400	\$28,220	\$35,557,200	\$27,580
43-6011	Executive Secretaries and Adr	490	0.50%	\$39,970	\$19,585,300	\$41,900	\$20,531,000	\$40,090
43-6014	Secretaries, Except Legal, Mec	1,070	1.09%	\$28,400	\$30,388,000	\$31,670	\$33,886,900	\$30,820
43-9061	Office Clerks, General	2,050	2.09%	\$26,940	\$55,227,000	\$27,990	\$57,379,500	\$26,910
CONSTRUCTION AND EXTRACIO	ON OCCUPATIONS							
47-1011	First-Line Supervisors/Manage	2,980	3.04%	\$58,900	\$175,522,000	\$57,920	\$172,601,600	\$56,560
47-2061	Construction Laborers	2,390	2.44%	\$32,680	\$78,105,200	\$35,940	\$85,896,600	\$33,810
47-2071	Paving, Surfacing, and Tampin	200	0.20%	\$43,280	\$8,656,000	\$35,910	\$7,182,000	\$34,260
47-2073	Operating Engineers and Othe	10,090	10.30%	\$38,490	\$388,364,100	\$47,270	\$476,954,300	\$45,710
47-2111	Electricians	910	0.93%	\$53,240	\$48,448,400	\$46,070	\$41,923,700	\$48,210
47-5021	Earth Drillers, Except Oil and (950	0.97%	\$37,070	\$35,216,500	\$29,550	\$28,072,500	\$27,370
47-5031	Explosives Workers, Ordnance	370	0.38%	\$42,780	\$15,828,600	\$29,550	\$10,933,500	\$27,370
47-5041	Continuous Mining Machine Or	2,040	2.08%	\$43,170	\$88,066,800	\$29,550	\$60,282,000	\$27,370
47-5042	Mine Cutting and Channeling I	1,970	2.01%	\$37,660	\$74,190,200	\$29,550	\$58,213,500	\$27,370
47-5049	Mining Machine Operators, All	1.210	1.24%	\$37,450	\$45,314,500	\$29,550	\$35,755,500	\$27.370
47-5051	Rock Splitters, Quarry	2.650	2.71%	\$29.670	\$78,625,500	\$29,550	\$78.307.500	\$27.370
47-5061	Roof Bolters Mining	_,		\$55,750	+,	\$29 550	+	\$27 370
47-5081	HelpersExtraction Workers	1 250	1 28%	\$29,990	\$37 487 500	\$29 550	\$36 937 500	\$27 370
47-5099	Extraction Workers All Other	950	0.97%	\$36,200	\$34 390 000	\$29,550	\$28,072,500	\$27,370
17 5055	Extraction Workers, Air other	550	0.57 /0	<i>430,200</i>	\$31,330,000	Ψ29,990	<i>\$20,072,000</i>	φ27,570
INSTALLATION MAINTENANCE	AND REPAIR OCCUPATIONS							
49-1011	First-Line Supervisors/Manage	810	0.83%	\$62 870	\$50 924 700	\$60.020	\$48 616 200	\$58 940
49-3031	Bus and Truck Mechanics and	970	0.05%	\$40,700	\$39,479,000	\$40,710	\$39,488,700	\$39,700
49-3042	Mobile Heavy Equipment Mech	2 610	2 66%	¢/1 820	\$109,150,200	¢42 000	¢111 969 000	¢12 360
49 5042	Industrial Machinory Machanic	1 520	1 55%	\$41,020 ¢16,180	\$70,649,600	\$42,500 ¢45.080	¢60,880,600	\$42,500 \$46,000
49-9041	Maintonanco and Ponair Work	2 770	2 83%	\$40,400	¢111 714 100	\$73,500 \$38,740	¢107 300 800	¢38 110
49-9042	Maintenance Workers, Machin	2,770	2.03%	\$40,330 ¢26 500	¢21 755 000	\$30,740 ¢27.010	\$107,309,000 ¢22.001.700	\$30,110 ¢26,420
49-9043	Millwrights	400	0.09%	\$30,300	\$31,733,000	\$37,910	\$32,301,700	\$30,430 ¢40 650
49-9044	Milliwrights Drecision Instrument and Equi	490	0.50%	\$49,940 ¢40,700	\$24,470,800	\$49,900 ¢E0.9E0	\$24,490,200	\$40,000 ¢E0.000
49-9009	Precision Instrument and Equi	40	0.04%	\$49,700	\$1,988,000	\$50,650	\$2,034,000	\$50,900
49-9098	HelpersInstallation, Mainten	380	0.39%	\$33,220	\$12,623,600	\$23,970	\$9,108,600	\$22,550
PRODUCTION OPERATIONS								
PRODUCTION OPERATIONS	First Line Companying (Managar	1 200	1 420/	*FCF20	+70 576 700		AT0 705 200	AFE 400
51-1011	First-Line Supervisors/Manage	1,390	1.42%	\$56,530	\$78,576,700	\$56,680	\$78,785,200	\$55,430
51-4035	Milling and Planing Machine Se	90	0.09%	\$36,000	\$3,240,000	\$36,810	\$3,312,900	\$36,870
51-4041	Machinists	200	0.20%	\$48,350	\$9,670,000	\$38,700	\$7,740,000	\$37,130
51-4121	Welders, Cutters, Solderers, a	900	0.92%	\$37,410	\$33,669,000	\$36,770	\$33,093,000	\$36,550
51-8021	Stationary Engineers and Boile	60	0.06%	\$55,910	\$3,354,600	\$51,390	\$3,083,400	\$51,410
51-8099	Plant and System Operators, I	480	0.49%	\$43,090	\$20,683,200	\$61,660	\$29,596,800	\$65,180
51-9012	Separating, Filtering, Clarifyin	760	0.78%	\$37,190	\$28,264,400	\$38,420	\$29,199,200	\$38,820
51-9021	Crushing, Grinding, and Polish	3,540	3.61%	\$34,990	\$123,864,600	\$30,100	\$106,554,000	\$29,570
51-9023	Mixing and Blending Machine :	490	0.50%	\$37,290	\$18,272,100	\$40,390	\$19,791,100	\$41,380
51-9032	Cutting and Slicing Machine S	540	0.55%	\$30,370	\$16,399,800	\$32,210	\$17,393,400	\$32,480
51-9051	Furnace, Kiln, Oven, Drier, and	450	0.46%	\$38,870	\$17,491,500	\$31,310	\$14,089,500	\$30,650
51-9061	Inspectors, Testers, Sorters, S	1,150	1.17%	\$35,510	\$40,836,500	\$35,520	\$40,848,000	\$34,290
51-9111	Packaging and Filling Machine	1,120	1.14%	\$32,800	\$36,736,000	\$31,390	\$35,156,800	\$29,550

\$4,606,000 \$64,227,500	
\$28,090,500 \$2,529,600 \$46,995,900 \$6,847,600 \$6,773,500 \$1,504,000 \$2,166,000 \$4,430,800 \$23,647,800 \$3,854,000 \$7,827,300 \$2,986,200 \$34,750,800 \$19,644,100 \$32,977,400 \$55,165,500	
\$168,548,800 \$80,805,900 \$6,852,000 \$461,213,900 \$43,871,100 \$26,001,500 \$10,126,900 \$55,834,800 \$53,918,900 \$33,117,700 \$72,530,500 \$34,212,500	
\$26,001,500 \$47,741,400 \$38,509,000 \$110,559,600 \$70,056,800 \$105,564,700 \$31,694,100 \$23,838,500 \$2,036,000 \$8,569,000	
\$77,047,700 \$3,318,300 \$7,426,000 \$32,895,000 \$3,084,600 \$31,286,400 \$29,503,200 \$104,677,800 \$20,276,200 \$17,539,200 \$13,792,500 \$39,433,500 \$33,096,000	

51-9195	Molders, Shapers, and Casters			\$35,670		\$27,010		\$24,910
51-9198	HelpersProduction Workers	980	1.00%	\$27,640	\$27,087,200	\$26,030	\$25,509,400	\$24,710
51-9199	Production Workers, All Other	460	0.47%	\$41,480	\$19,080,800	\$29,280	\$13,468,800	\$26,450
TRANSPORTATION AND	MATERIAL MOVING OPERATIONS							
53-1021	First-Line Supervisors/Manage	410	0.42%	\$48,310	\$19,807,100	\$47,200	\$19,352,000	\$44,890
53-1031	First-Line Supervisors/Manage	1,200	1.23%	\$54,820	\$65,784,000	\$53,570	\$64,284,000	\$51,230
53-3032	Truck Drivers, Heavy and Trac	9,600	9.80%	\$35,310	\$338,976,000	\$39,480	\$379,008,000	\$37,480
53-3033	Truck Drivers, Light or Deliver	440	0.45%	\$31,690	\$13,943,600	\$31,970	\$14,066,800	\$28,610
53-4013	Rail Yard Engineers, Dinkey O	50	0.05%	\$39,870	\$1,993,500	\$39,870	\$1,993,500	\$39,870
53-7011	Conveyor Operators and Tendo	950	0.97%	\$36,260	\$34,447,000	\$31,980	\$30,381,000	\$33,690
53-7021	Crane and Tower Operators	200	0.20%	\$39,010	\$7,802,000	\$38,710	\$7,742,000	\$36,360
53-7031	Dredge Operators	1,030	1.05%	\$35,040	\$36,091,200	\$40,760	\$41,982,800	\$37,800
53-7032	Excavating and Loading Machi	7,390	7.55%	\$34,410	\$254,289,900	\$40,760	\$301,216,400	\$37,800
53-7033	Loading Machine Operators, U	700	0.71%	\$37,330	\$26,131,000	\$40,760	\$28,532,000	\$37,800
53-7041	Hoist and Winch Operators	30	0.03%	\$44,060	\$1,321,800	\$44,060	\$1,321,800	\$44,060
53-7051	Industrial Truck and Tractor O	2,150	2.20%	\$32,890	\$70,713,500	\$30,560	\$65,704,000	\$30,230
53-7061	Cleaners of Vehicles and Equir	50	0.05%	\$31,510	\$1,575,500	\$23,290	\$1,164,500	\$21,210
53-7062	Laborers and Freight, Stock, a	3,660	3.74%	\$27,140	\$99,332,400	\$25,190	\$92,195,400	\$23,400
53-7063	Machine Feeders and Offbeare	310	0.32%	\$27,610	\$8,559,100	\$29,480	\$9,138,800	\$26,130
53-7064	Packers and Packagers, Hand	90	0.09%	\$23,920	\$2,152,800	\$21,600	\$1,944,000	\$20,450
53-7072	Pump Operators, Except Wellh	110	0.11%	\$33,240	\$3,656,400	\$33,240	\$3,656,400	\$33,240
53-7111	Shuttle Car Operators	100	0.10%	\$49,970	\$4,997,000	\$39,780	\$3,978,000	\$37,790
53-7121	Tank Car, Truck, and Ship Load	140	0.14%	\$41,520	\$5,812,800	\$39,780	\$5,569,200	\$37,790
53-7199	Material Moving Workers, All C	70	0.07%	\$30,730	\$2,151,100	\$39,780	\$2,784,600	\$37,790
		96350	98.28%		\$3,921,081,600		\$4,039,208,000	
		98.38%			\$40,696		\$41,922.24	

\$24,215,800 \$12,167,000
\$18,404,900
\$61,476,000
\$359,808,000
\$12,588,400
\$1,993,500
\$32,005,500
\$7,272,000
\$38,934,000
\$279,342,000
\$26,460,000
\$1,321,800
\$64,994,500
\$1.060.500
\$85,644,000
\$8,100,300
\$1 840 500
\$3,656,400
\$3,030,400 \$3,779,000
#5,779,000
#3,290,000 #3,645,200
10.115,500

Brick Production: Top Clay-Mining States

Common Clay and Shale Used in Building Brick Production in the United States, by States

	Quantity		Quantity		Quantity	
	(thousand		(thousand		(thousand	
	metric tons)		metric tons)		metric tons)	
State	2007	%	2008	%	2009	%
Alabama	1320	11.22%	782	8.86%	718	10.04%
Arkansas	380	3.23%	257	2.91%	220	3.07%
California	211	1.79%	164	1.86%	131	1.83%
Colorado	154	1.31%	108	1.22%	91	1.27%
Georgia	1260	10.71%	884	10.02%	741	10.37%
Kentucky	409	3.48%	275	3.12%	236	3.30%
Mississippi	508	4.32%	433	4.91%	330	4.61%
North Carolina	1650	14.03%	1250	14.17%	1008	14.10%
Ohio	495	4.21%	379	4.30%	304	4.25%
Oklahoma	601	5.11%	541	6.13%	402	5.62%
Pennsylvania	603	5.13%	555	6.29%	408	5.71%
South Carolina	619	5.26%	453	5.13%	372	5.20%
Tennessee	199	1.69%	155	1.76%	123	1.72%
Texas	814	6.92%	604	6.85%	492	6.88%
Virginia	561	4.77%	502	5.69%	374	5.23%
Other	1980	16.83%	1480	16.78%	1201	16.80%
TOTAL	11764		8822		7150	
% for Brick	57.11%		57.29%		57.20%	
Total Common Clay	20,600		15,400		12,500	
Top 4 Total:			3520	39.90%		

Common Clay used in Brick, Production by State

- South Carolina

BRICK LCA APPENDIX A: DATA & SOURCES Manufacturing Data

Manufacturing of Standard Bricks

Economic & environmental data from three US Dept. of Energy ITP Assessments. Ethical data from the US Bureau of Labor Statistics, as follows: wage data based upon "Clay Product & Refractory Manufacturing," NAICS code 327100; fatality data based upon the "Manufacturing" sector (see reference [e] below); injury/illness data based upon "Brick and structural clay tile manufacturing," NAICS code 327121.

		Assessment #	ŧUA0022	Assessment	#NC0352	Assessment #	CO0578	Average / 0	Overall Industry
Metric	Units	Quantity	Source	Quantity	Source	Quantity	Source	Quantity	Source
ECONOMIC									
Material cost	\$ / ton	V/////////////////////////////////////		X/////////////////////////////////////					
Labor cost	\$ / ton	X/////////////////////////////////////		X/////////////////////////////////////		X/////////////////////////////////////		3	
Total cost	\$ / ton	¥/////////////////////////////////////		X/////////////////////////////////////				1	
Total sales	dollars	\$17,000,00	0 [d]	\$8,000,	000 [d]	\$22,000,00	0 [d]		
Total output	bricks	118,000,00	0 [d]	160,000,	000 [d]	42,000,00	0 [d]		
Total output	tons	267,34	4 calc.	362,	500 calc.	95,15	6 calc.		
Revenue per unit	\$ / brick	\$0.1	4 calc.	\$0).05 calc.	\$0.52	calc.	\$	0.24 calculated
Revenue per ton	\$ / ton	\$63.5	59 calc.	\$22	2.07 calc.	\$231.20	calc.	\$10	5.62 calculated
ENVIRONMENTAL									
Emissions to air			////////	X/////////////////////////////////////	///////////////////////////////////////		///////	X/////////////////////////////////////	777777777777777777777777777
GHG emissions	lbs CO2e / ton							78	5.07 calculated
GHG emissions from electricity	lbs CO2e / ton							63	3.53 calculated
GHG emissions from nat. gas	lbs CO2e / ton							15	2.54 calculated
Energy use	MMBtu	454,97	'3 [d]	575,	030 [d]	162,90	2 [d]		
Electricity	kWh	9,164,16	58 [d]	11,078,	300 [d]	3,931,20	0 [d]		
Electricity % of total	%	20.65	% calc.	19.7	'5% calc.	24.749	6 calc.		22% calculated
Natural Gas	MMBtu	361,04	[b] 0	461,	477 [d]	122,60	7 [d]		
Nat. Gas % of total	%	79.35	% calc.	80.2	5% calc.	75.26%	6 calc.		78% calculated
Energy use per ton	MMBtu / ton			X/////////////////////////////////////		X/////////////////////////////////////			1.67 calculated
Electricity	MMBtu / ton	V/////////////////////////////////////		X/////////////////////////////////////		X/////////////////////////////////////			0.12 calculated
Natural Gas	MMBtu / ton			X/////////////////////////////////////		X/////////////////////////////////////			1.30 calculated
Energy use per unit	Btu / brick	3855.7	'0 calc.	3593	3.94 calc.	3878.6	2 calc.	3,77	5.09 calculated
Electricity	kWh / brick	0.077	7 calc.	0.0	692 calc.	0.093	6 calc.		0.08 calculated
Natural Gas	Btu / brick	3059.6	6 calc.	2884	1.23 calc.	2919.2	1 calc.	2,95	4.37 calculated
Water use	gal / ton			X/////////////////////////////////////		X/////////////////////////////////////			
ETHICAL									
Injury / illness rate	cases per 100 employees			X/////////////////////////////////////				1	7.0 [a]
relative to all occupations	%							189	.2% [a]
Fatality rate	per 100,000 / yr							1	2.2 [e]
relative to all occupations	%					X/////////////////////////////////////		66	.7% [e]
Annual wage (Cincinnati)		¥/////////////////////////////////////		X/////////////////////////////////////				X/////////////////////////////////////	
Mean	\$ / yr							\$31	,677 calculated
Median	\$ / yr	¥/////////////////////////////////////		X/////////////////////////////////////		XIIIIIIIII		\$31	,483 calculated
% of local avg. wage		X/////////////////////////////////////				X/////////////////////////////////////		X/////////////////////////////////////	
Mean	%	¥/////////////////////////////////////		X/////////////////////////////////////		X/////////////////////////////////////		1	75% calculated
Median	%	Y/////////////////////////////////////		X/////////////////////////////////////		X//////////////////////////////////////			36% calculated

23

Sources

- [a] U.S. Bureau of Labor Statistics, "Incidence rates of nonfatal occupational injuries and illnesses by industry and case types, 2008" (http://www.bls.gov/iif/oshwc/osh/os/ostb2071.pdf)
- [b] National Mining Association (NMA), "Mining in North Carolina, 2004" (http://www.nma.org/pdf/states/nc2004.pdf)
- [c] National Mining Association (NMA), "Mining in North Carolina, 2007" (http://www.nma.org/pdf/states/econ/nc.pdf)
- [d] U.S. Dept of Energy, Energy Efficiency and Renewable Energy, Industrial Technologies Program, "IAC Assessment Statistics" (2010)
- (http://iac.rutgers.edu/database/statistics/?STATE=&CENTER=&YEAR_limit=%3C%3D&YEAR=2010&SIC=&NAICS=327121&search=Search)
- [e] U.S. Bureau of Labor Statistics (www.bls.gov) [cfch0008.pdf]
- [f] Robert L. Vitra, "2008 Minerals Yearbook: Clay and Shale [Advance Release]" (U.S. Geological Survey, September 2010),
- http://minerals.usgs.gov/minerals/pubs/commodity/clays/myb1-2008-clays.pdf
- [g] U.S. Life-Cycle Inventory Database, "Limestone, at mine," http://www.nrel.gov/lci/database/default.asp (accessed 26 September 2010)
- [h] Jim Mavis, "Water Use in Industries of the Future," (U.S. Dept of Energy Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, July 2003), http://www1.eere.energy.gov/industry/mining/pdfs/water_use_mining.pdf
- [i] U.S. Energy Information Administration, http://www.eia.doe.gov/oiaf/1605/coefficients.html
- [j] U.S. EPA, http://cfpub.epa.gov/egridweb/ghg.cfm
- [m] U.S. Bureau of Labor Statistics, http://www.bls.gov/oes/current/naics4_327100.htm
- [n] U.S. Bureau of Labor Statistics, May 2009 Occupational Employment and Wage Estimates: Metropolitan Area Cross-Industry Estimates,
- ftp://ftp.bls.gov/pub/special.requests/oes/oesm09ma.zip

EMISSION FACTORS		Units	Source
1 MMBTU natural gas	=	53.06 kgCO2	[i]
1 MWh electricity in Ohio	=	1,538 lbsCO2	[j]
1 MWh	=	3412141.63 BTU	[k]
1 MMBTU	=	1,000,000 BTU	given
1 MMBTU electricity in Ohio	=	5247.26 lbsCO2	calculated
1 kg	=	2.2046226 lbs	given

24

AVERAGE WAGES - MANUFACTURING

Production Occupation	SOC Code Number	% of Total Industry (Clay Product & Refractory Manufacturing, NAICS 327100)	#	Mean Annual Wage (national) Source	Weighted Mean Annual Wage (national)	Mean Annual Wage (Cincinnati)	Weighted Mean Annual Wage (Cincinnati)	Median Annual Wage (national)	Weighted Median Annual Wage (national)	Median Annual Wage (Cincinnati) Source	Weighted Median Annual Wage (Cincinnati)
Molders, Shapers, and Casters, Except											
Metal and Plastic Extruding, Forming, Pressing, and	51-9195	7.03%	3160	\$28,830 [m]	\$91,102,800	\$27,010	\$85,351,600	\$28,160	\$88,985,600	\$24,910 [n]	\$78,715,600
Compacting Machine Setters,											
Operators, and Tenders	51-9041	5.52%	2480	\$29,710 [m]	\$73,680,800	\$33,470	\$83,005,600	\$28,990	\$71,895,200	\$27,590 [n]	\$68,423,200
Furnace, Kiln, Oven, Drier, and Kettle											
Operators and Tenders	51-9051	4.76%	2140	\$31,120 [m]	\$66,596,800	\$31,310	\$67,003,400	\$29,700	\$63,558,000	\$33,370 [n]	\$71,411,800
First-Line Supervisors/Managers of											
Production and Operating Workers	51-1011	4.63%	2080	\$52,060 [m]	\$108,284,800	\$35,080	\$72,966,400	\$50,030	\$104,062,400	\$53,690 [n]	\$111,675,200
Inspectors, Testers, Sorters, Samplers,											
and Weighers	51-9061	3.98%	1790	\$33,280 [m]	\$59,571,200	\$35,520	\$63,580,800	\$31,390	\$56,188,100	\$32,680 [n]	\$58,497,200
HelpersProduction Workers	51-9198	3.65%	1640	\$25,190 [m]	\$41,311,600	\$26,030	\$42,689,200	\$24,010	\$39,376,400	\$21,550 [n]	\$35,342,000
Team Assemblers	51-2092	3.38%	1520	\$26,310 [m]	\$39,991,200	\$29,610	\$45,007,200	\$26,000	\$39,520,000	\$26,680 [n]	\$40,553,600
Mixing and Blending Machine Setters,											
Operators, and Tenders	51-9023	3.38%	1520	\$31,400 [m]	\$47,728,000	\$40,390	\$61,392,800	\$30,980	\$47,089,600	\$32,970 [n]	\$50,114,400
Machinists	51-4041	2.09%	940	\$35,150 [m]	\$33,041,000	\$38,700	\$36,378,000	\$34,050	\$32,007,000	\$36,790 [n]	\$34,582,600
Painting, Coating, and Decorating											
Workers	51-9123	2.07%	930	\$24,350 [m]	\$22,645,500	\$22,270	\$20,711,100	\$22,770	\$21,176,100	\$24,900 [n]	\$23,157,000
Coating, Painting, and Spraying Machine Setters, Operators, and											
Tenders	51-9121	2.00%	900	\$27,570 [m]	\$24,813,000	\$34,270	\$30,843,000	\$26,960	\$24,264,000	\$28,640 [n]	\$25,776,000
Crushing, Grinding, and Polishing Machine Setters, Operators, and											
Tenders	51-9021	1.98%	890	\$31,530 [m]	\$28,061,700	\$30,100	\$26,789,000	\$30,110	\$26,797,900	\$38,490 [n]	\$34,256,100
Production Workers, All Other Cutting and Slicing Machine Setters,	51-9199	1.42%	640	\$26,570 [m]	\$17,004,800	\$29,280	\$18,739,200	\$26,060	\$16,678,400	\$36,120 [n]	\$23,116,800
Operators, and Tenders	51-9032	1.00%	450	\$29,600 [m]	\$13,320,000	\$32,210	\$14,494,500	\$28,970	\$13,036,500	\$29,480 [n]	\$13,266,000
Operators and Tenders	51-9111	0.87%	390	\$29.000 [m]	\$11 310 000	\$31 390	\$12 242 100	\$28 620	\$11 161 800	\$23 440 [n]	\$9 141 600
Cutting, Punching, and Press Machine Setters, Operators, and Tenders, Metal	51 5111	0.07 /0	350	\$23,000 [m]	<i><i><i></i></i><i><i><i><i><i></i></i></i></i></i></i>	<i>431,390</i>	<i>412,212,100</i>	420,020	φ11,101,000	φ 23, 110 [11]	\$3,111,000
and Plastic	51-4031	0.87%	390	\$30,300 [m]	\$11,817,000	\$31,510	\$12,288,900	\$30,150	\$11,758,500	\$28,890 [n]	\$11,267,100
Grinding and Polishing Workers, Hand	51-9022	0.82%	370	\$27,900 [m]	\$10,323,000	\$28,930	\$10,704,100	\$26,710	\$9,882,700	\$28,590 [n]	\$10,578,300
			22230		\$700,603,200		\$704,186,900		\$677,438,200		\$699,874,500
			90.11%		\$31,516		\$31,677		\$30,474		\$31,483.33

OVERALL WAGE FIGURES	Source
Mean Annual Wage, All Occupations, Cincinnati	\$42,340 [n]
Median Annual Wage, All Occupations, Cincinnati	\$32,950 [n]

BRICK LCA APPENDIX A: DATA & SOURCES Transportation Data

Transportation (Common Clay)

Transportation distances from calculations (in the case of site-specific data) and general industry sources (in the case of general industry data). Economic data from "The Geography of Transportation Systems" (see source [1] below) and the "U Ship Price Estimator" (see source [8] below). Environmental (emission) data calculated based upon vehicle miles traveled and emission factors from the EPA, assuming a fuel efficiency of 6mpg for a laden semi truck. Ethical data from the U.S. Bureau of Labor Statistics, as follows: wage data based upon "Truck Drivers, Heavy and Tractor-Trailer" (see references [9, 10] below); injury/illness and fatality data based upon "General Freight Trucking, Long Distance" (see references [11, 12] below).

		Site	-Specific Data (Brick t	o Cincinnati, Ohio)		General Industry Data (Brick in the U.S.)					
		Extraction to	Manufacture to	Assembly to		Extraction to	Manufacture to	Assembly to			
		manufacture	assembly	disposal	TOTAL	manufacture	assembly	disposal	TOTAL		
	Units	Q Source	e Q Source	Q Source	Q Source	Q Source	Q Source	Q Source	Q Source		
TRANSPORT INFO											
Distance traveled	miles	0 [3]	123 [2]	10.6 [2]	133.6 calc.	15 [4]	200 [5]	50 est.	265 calc.		
Type of transport	N/A	N/A	road [3]	road est.	road	road [4]	road [4]	road est.	road		
ECONOMIC											
Per unit cost	\$ / ton-mile	\$0.251 [1]	\$0.251 [1]	\$0.251 [1]		\$0.251 [1]	\$0.251 [1]	\$0.251 [1]			
Total cost - source 1	\$ / ton	\$0.00	\$30.87 calc.	\$2,66 calc.	\$33,53 calc.	\$3.77 calc.	\$50.20 calc.	\$12.55 calc.	\$66.52 calc.		
Total cost - source 2	\$ / ton	N/A	\$62.50 [8]	N/A	\$65.16 [8]	N/A	N/A	N/A	N/A		
ENVIRONMENTAL											
Emissions to air											
GHG emissions	lbs CO2-e / full truck load	0 [6,7]	455.1 [6,7]	39.22 [6,7]	494.32	55.5 [6,7]	740 [6,7]	185 [6,7]	980.5 calc.		
GHG emissions	lbs CO2-e / ton	0 [14]	34.87 [14]	3.01 [14]	37.88	4.25 [14]	56.70 [14]	14.18 [14]	75.13 calc.		
Energy use	MMBTU / ton	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA		
Water use	gal / ton	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA		
ETHICAL											
Injury / illness rate	cases per 100 employees				NO DATA				5.5 [11]		
relative to all occupations	%				NO DATA				148.6% [11]		
Fatalities	per 100,000 employees				NO DATA				18.3 [12]		
relative to all occupations	%				NO DATA				554.5% [12]		
Annual wage (Cincinnati)											
Mean	\$ / yr				\$39,180 [10]				\$39,260 [9]		
Median	\$ / yr				\$37,770 [10]				\$37,730 [9]		
% local avg. wage		X/////////////////////////////////////			X/////////////////////////////////////				X/////////////////////////////////////		
Mean	%				97.2% calc.				92.7% calc.		
Median	%	V/////////////////////////////////////			118.7% calc.			///////////////////////////////////////	114.5% calc.		

Sources	Transit type	Cost	Units So	urce		
[1] http://people.hofstra.edu/geotrans/eng/ch3en/conc3en/modaltransportcosttonmile.html	Water	0.007	7 \$/ton-mi [1]]		
[2] Google Maps (www.google.com/maps)	Rail	0.025	5 \$/ton-mi [1]]		
[3] http://www.hansonbrick.com/en/builder/green_leed.php	Road	0.251	\$/ton-mi [1]]		
[4] Brick Institute of America, as cited in "Building With Brick," Boral Bricks, Inc., December 2009,	Air	0.588	3 \$/ton-mi [1]]		
http://boralbricks.com/images/Users/1/PastelCote/News/WhitePaperSustainable_BoralLetterhead.pdf						
[5] Brick Industry Association, "Sustainability and Brick," June 2009, http://www.gobrick.com/BIA/technotes/TN48.pdf						
[6] U.S. EPA, http://www.epa.gov/otaq/climate/420f05003.htm	Environmental Impacts - Diesel Fuel					
[7] Lawrence Livermore National Laboratory, https://www.llnl.gov/news/newsreleases/2010/NR-10-02-08.html	Diesel	22.2	2 lbs CO2 [[6]			
[8] U Ship Price Estimator, http://www.uship.com/price_estimator.aspx?v=0&z1=40380&z2=45220&w=12000&c=417&s=150	Gasoline	19.4	l lbs CO2 [6]]		
[9] U.S. Bureau of Labor Statistics, http://www.bls.gov/oes/current/oes533032.htm	Semi truck efficien	c 6	5 mpg [7]]		
[10] U.S. Bureau of Labor Statistics, http://data.bls.gov:8080/oes/datatype.do	CO2 per mile	3.7	lbs CO2 per	mile		
[11] U.S. Bureau of Labor Statistics, "Incidence rates of nonfatal occupational injuries and illnesses by industry and case types, 2008"						
(http://www.bls.gov/iif/oshwc/osh/os/ostb2071.pdf)						
[12] U.S. Bureau of Labor Statistics, "Census of Fatal Occupational Injuries Charts, 1992-2009,"						
http://www.bls.gov/iif/oshwc/cfoi/cfch0008.pdf	Conversions					
[13] U.S. EPA, http://www.epa.gov/otaq/toxics.htm	1 semi	=	12 pa	llets brick		
[14] http://www.pioneersand.com/wholesale/flagstone/flagstone.htm	1 pallet brick	=	480 bri	icks		
	1 brick	=	4.5313 lbs	5		

1 semi

1 pallet bricks

1 pallet brick

=

=

=

2175 lbs

1.0875 tons

13.05 tons

BRICK LCA APPENDIX A: DATA & SOURCES Composition of a Brick Wall

Composition of a Brick Wall

Component	%	Source	Quantity	Units	Source
Composition of Brick	Wall				
By Volume					
Standard brick	71.07%	[d]	0.2677	c.f. brick	[d]
Mortar (type N)	28.93%	[d]	0.1090	c.f. mortar	[d]
By Weight					
Standard brick	68.59%	[e]	0.0161	tons / s.f. wall	[e]
Mortar (type N)	31.41%	[e]	0.0074	tons / s.f. wall	[e]
Composition of Brick			per ton		
By Material Used in P	roduction				
Clay & bottom ash	85%	[a]	1700	lbs / ton	calc.
Water	15%	[b]	300	lbs / ton	calc.
Manganese	negligible	[a, b]	0	lbs / ton	calc.
By Mass					
Clay	99.2%	[f]	1984	lbs / ton	calc.
Bottom ash	0.08%	[f]	1.6	lbs / ton	calc.
Composition of Type	N Mortar by	Volume			
Portland cement	9.4%	calc.	3.375	c.f.	[c]
Hydrated lime	9.4%	calc.	3.375	c.f.	[c]
Sand	56.3%	calc.	20.25	c.f.	[c]
Water	25.0%	[f]	9.00	c.f.	calc.
TOTAL	100.0%	calc.	36.00	c.f.	calc.
Composition of Portla	and Cement				
Limestone	71.7%	calc.	1.17	ka	[a]
Cement rock / marl	12.9%	calc.	0.21	ka	[0]
Clav	3.7%	calc.	0.06	ka	
Shale	3.1%	calc.	0.05	ka	[0]
Sand	2.5%	calc	0.04	ka	[0]
Slag	1.2%	calc.	0.02	ka	
Iron / iron ore	0.6%	calc	0.01	ka	
Fly ash	0.6%	calc	0.01	ka	
Bottom ash	0.6%	calc	0.01	ka	
Foundry sand	0.0%	calc.	0.01	kg	
Slate	0.2%	calc.	0.004	ka	
Gyngum	2.0%	calc.	0.001	kg	[9]
тота	100.0%		1 622	kg	
TOTAL	100.0%	calc.	1.055	ку	calc.
End of Life Trajectori	es	5.67			
Keuse	25%		500	ibs / ton	calc.
Recycle	49%	[t, h]	975	lbs / ton	calc.
Landfill	26%	[f, h]	525	lbs / ton	calc.
TOTAL	100%	calc.			

Sources

[a] http://www.mc2-ice.com/support/estref/popular_conversion_files/
masonry/mortar.htm
[b] http://www.umich.edu/~bricks/brickwebsite/setting_drying/
setting_drying_page3.htm
[c] http://www.mc2-ice.com/support/estref/popular_conversion_files/
masonry/mortar.htm
[d] calculated based upon data from R.S. Means (www.meanscostworks.com)
[e] calculated based upon data from R.S. Means (www.meanscostworks.com) and
http://www.reade.com/Particle_Briefings/spec_gra2.html
[f] BEES 4.0, "Generic Brick and Mortar"
[g] BEES 4.0, "Generic Concrete Products with Portland Cement"
[h] utilizes a 65% recovery rate of daily infeed, based upon data from H. Hafner &

[h] utilizes a 65% recovery rate of daily infeed, based upon data from H. Hafner & Sons, http://www.hafners.com. Further research is needed to determine in this rate is typical.

27

BRICK LCA APPENDIX A: DATA & SOURCES EIOLCA Data & Comparison

rnegieMellon						- <u>J</u>	reen Derign	CarnegieMellon			Green Derign	CarnegieMellon					Green Derig
Sector #32712A: Brick, bile, and other structural day p Economic Activity: \$1 Million Dollars Displaying: Economic Activity Number of Sectors: Top 10	product manufa	ecturing	Documental The environm Frequently as This sector	tion: nental, enen sked questio list was co	rgy, and other ons about EIO	data used and LCA. Green Design	their sources.	Sector #32712A: Brick, tile, and other str Economic Activity: \$1 Million Dollars Displaying: Energy Number of Sectors: Top 10	uctural clay product manufacturing	Documentation: The environmental, energy, and o Frequently asked questions about This sector list was contribute	her data used and their sources. EIC-LCA.	Sector #32712A: Brick, tile, and other structural of Economic Activity: 31 Million Dalars Displaying Greenhouse Gases Number of Sectors: Top 10	lay product manufacturing	Documenta The environ Frequently a This sector	ation: mental, energy usked questions	and other data	used and their sources.
Change Inputs (Click here to view greenhous	se gases, air pi	illutants, etc)						Change Inputs (Click here to vie	w greenhouse gases, air pollutants, etc)		-,	Change Inputs (Click here to view green	house gases, air pollutants, etc)				
Sector	Total Economic	Total Value	Employee Con	mp <u>Net Ta</u>	ax Profits	Direct Economic	Direct		Sector Total	nergy <u>Coal NatGas Petrol Bio</u> <u>TJ</u> <u>TJ</u> <u>TJ</u> <u>TJ</u>	Waste NonFossElec	S	actor t CO	al <u>CO2 Fossi</u> 2e <u>t CO2e</u>	CO2 Process	<u>CH4</u> <u>N20</u> t CO2e t CO2	e <u>HFC/PFCs</u> e <u>tCO2e</u>
Total for all sectors	<u>\$miii</u> 1.83	0.994	0.526	0.034	0.433	<u>\$miii</u> 1.42	77.6	Total for all secto	rs 31.4	7.52 17.0 4.14 0.5	9 2.15	Total for all sectors	201	1860	30.2	108. 9.89	8.74
Brick, tile, and other structural clay product	0.002	0.590	0.204	0.005	0.282	0.000	100.0	32712A Brick, tile, and ot	and supply	4.07 14.6 3.02 0.1	4 1.50	32/12A Brick, tile, and other struct	urai ciay product manuracturing 135	1350	0	0.065 0.19	2.26
32712A manufacturing	0.992	0.580	0.294	0.005	0.282	0.992	100.0	221100 Power generation 225100 Other havis organ	and supply 4.34	3.16 0.925 0.154 0	3 0.022	221100 Power generation and supp 211000 Oil and cas extraction	ny 336. 57 c	16.3	10.6	31.0 0	2.26
550000 Management of companies and enterprises	0.080	0.050	0.042	0.001	0.006	0.058	72.0	211000 Oil and pas extra	ction 0.347	0 0.283 0.029 0	0.034	212100 Coal mining	43.8	4 94	0	38.9 0	0
221200 Natural gas distribution	0.050	0.017	0.004	0.003	0.009	0.046	92.8	486000 Pipeline transport	tation 0.296	0 0.225 0 0	0.071	486000 Pipeline transportation	24.7	11.3	0.031	13.4 0	0
420000 Wholesale trade	0.047	0.033	0.018	0.008	0.007	0.028	58.6	324110 Petroleum refiner	ries 0.286	0.000 0.076 0.185 0.0	4 0.010	221200 Natural gas distribution	18.4	1.66	0	16.7 0	0
221100 Power generation and supply	0.040	0.027	0.008	0.005	0.014	0.032	80.0	322130 Paperboard Mills	0.227	0.021 0.047 0.010 0.1	4 0.016	325190 Other basic organic chemic	al manufacturing 17.8	15.9	0	0 1.83	0
211000 Oil and gas extraction	0.037	0.019	0.002	0.003	0.013	0.000	1.35	331110 Iron and steel mil	lls 0.182	0.108 0.050 0.002 0.0	0 0.022	324110 Petroleum refineries	17.1	17.0	0	0.053 0	0
33299C Other radicated metal manufacturing	0.024	0.011	0.007	0.000	0.004	0.023	95.3	484000 Truck transportat	ion 0.140	0 0 0.138 0	0.001	331110 Iron and steel mills	15.7	5.94	9.69	0.096 0	0
224110 Deterleum anfineries	0.017	0.001	0.001	0.002	0.010	0.004	24.0	482000 Rail transportatio	n 0.112	0 0 0.110 0	0.002	484000 Truck transportation	10.3	10.3	0	0 0	0
325190 Other havis organis chamical manufacturing	0.017	0.003	0.000	0.000	0.000	0.010	60.3		Download a 93 Mary	Crank C			Download a St 100	. Crach			
\$ Millions used in : Brick, t	tile, and othe	structural clay	product manufa	cturing													
									 327124 / matufar 	Brick, tile, and other structural day product ouring	23.3		327 prod	2A Brick, tile, and o uct manufacturing	ther structural day	1.3К	
		= 30 m	712A Brick, tile, and oth inufacturing	her structural d	day product	1.0			221100	Yower generation and supply	43		221	00 Power generativ	on and supply	354.3	
		5 3	6000 Management of o	companies and	l enterprises	0.1			325190	Other basic organic chemical manufacturing	0.4		211	00 Oil and gas extr	action	57.9	
		= 23	1200 Natural gas distri	bution		0.1		N	All Other	Sectors(400 remaining sectors)	13		2 12	00 Cost mining		43.6	
and the second		- 42	COOD Wholesale trade			0.0							III 486	00 Pipeline transpo	rtation	24.7	
		III 22	1100 Power generation	n and supply		0.0							III AILO	ther Sectors(486 re	maining sectors)	180.9	
			Other Sectors(486 rem	naining sectors)	5]	0.6											
		((Hide C	raph			Hide	Graph			
		HIC	e Graph					If you are using this output as part of a pro-	piert or paper, please cite appropriately			If you are using this output as part of a project or r	aner, pleare cite anoropriately				
If you are using this output as part of a project or paper	r, please cite ap	propriately.						Carnegie Mellon University Green Design In ">http://www.eiolca.net/> [Accessed 24 Oc	stitute. (2010) Economic Input-Output Life Cycle rt, 2010]	Assessment (EIO-LCA) US 2002 (28) model [Internet], Available from:	Carnegie Mellon University Green Design Institute. <http: www.eiolca.net=""></http:> [Accessed 24 Oct, 2010]	(2010) Economic Input-Output Life Cy	cle Assessment	(EIO-LCA) US	2002 (428) mod	lei [Internet], Available from:
Carnegie Mellon University Green Design Institute. (201 <http: www.eiolca.net=""></http:> [Accessed 24 Oct, 2010]	0) Economic In	put-Output Life (Cycle Assessment ((EIO-LCA) U	JS 2002 (428)	model [Interne	et], Available from:	© Green Design Institute, Carnegie	Mellon University, 2010.			© Green Design Institute, Carnegie Mellon	University, 2010.				
© Green Design Institute, Carnegie Mellon Uni	iversity, 201).															

Comparison to EIOLCA: Economic Activity & GHG Emissions

	ECONOMIC ACTIVITY						GREENHOUSE GAS EMISSIONS						
	This Analysis	5			EIOLCA		This Analysis	5	EIOLCA				
	Cost (US \$ per ton)	% of total	Cost without Const., EOL, or Transp.	% without Const., EOL, or Transp.	Economic Activity (millions of \$)	% of total	GHG Emissions (Ibs CO ₂ -e per ton)	% of total	GHG Emissions (metric tons	% of total	GHG Emissions without Power Gen.		
Extraction	\$44.81	5.9%	\$44.81	29.8%	0.037	2.8%	0.10	0.0%	0.0	0.0%	0		
Manufacturing	\$105.62	14.0%	\$105.62	70.2%	1.033	78.2%	786.07	95.4%	1350.0	70.6%	1350		
Construction	\$526.88	69.8%					0.00	0.0%					
End of Life	\$11.84	1.6%					0.04	0.0%			X/////////////////////////////////////		
Transportation	\$65.16	8.6%					37.88	4.6%	10.3	0.5%	10		
Power Generation & Supply Chain					0.04	3.0%			517.9	27.1%			
Other					0.211	16.0%			33.5	1.8%	33		
TOTALS	\$754.31	100.0%	\$150.43	100.0%	1.321	100.0%	824.10	100.0%	1911.7	100.0%	1393		

Green Derign

Sector #32712A: Brick, tile, Economic Activity: \$1 Millic Displaying: Toxic Releases Number of Sectors: Top 10

Documentation: The environmental, energy, and other data used and their sources. Frequently asked questions about EIO-LCA. his sector list was contributed by Green Design Institut

es, air pollutants, etc.
\$

	Sector	Carcinogens Mg C2H3Cl eg	Non-carcinogens Mg C2H3Cl eq	Respiratory inorganics kg PM2.5 eg	Ozone Dep kg CFC-11 eq	Respiratory organics kg C2H4 eq	Aquatic ecotoxicity Gg TEG water	Terrestrial ecotoxicity <u>Gg TEG</u> soil	<u>Terrestrial</u> acid/nutri kg SO2 eq	Aquatic acidif kg SO2 eg	Aquatic eutro kg PO4 P-lim
	Total for all sectors	165.	1700	0.828	0.363	14.0	468.	387.	102.	817.	0.010
2122A0	Gold, silver, and other metal ore mining	147.0	1530	0.009	0	0.000	14.3	49.0	1.10	0.317	0
221100	Power generation and supply	6.36	67.8	0.032	0	0.007	26.3	22.2	3.90	41.2	0
32712A	Brick, tile, and other structural clay product manufacturing	3.42	1.07	0	0	0.269	2.26	6.74	0	739.0	0
212230	Copper, nickel, lead, and zinc mining	3.15	49.7	0.000	0	0.002	351.0	248.0	0.018	0.019	0
331411	Primary smelting and refining of copper	2.74	29.8	0.000	0	0.000	55.7	28.2	0.000	0.007	0
212100	Coal mining	0.635	6.92	0.021	0	0.000	2.59	3.19	2.58	0.892	0
562000	Waste management and remediation services	0.507	4.96	0.000	0.000	0.002	5.11	8.18	0.000	0.008	0.010
33299C	Other fabricated metal manufacturing	0.221	0.007	0.003	0.062	0.936	0.102	0.076	0.359	0.267	0
325188	All other basic inorganic chemical manufacturing	0.094	2.32	0.040	0.077	0.038	0.633	2.11	4.96	1.70	0.000
33131A	Alumina refining and primary aluminum production	0.082	0.645	0.011	0.021	0.013	0.302	0.644	1.36	1.06	0.000

Download 🔹 🍇 View Graph 🤩

(kg) used in : Brick, tile, and other structural clay

Hide Graph

you are using this output as part of a project or paper, please cite appropriately.

vrnegie Mellen University Green Design Institute. (2010) Economic Input-Output Life Cycle Assessment (EIO-LCA) US 2002 (428) model [Internet], Available fro http://www.eloka.net/> (Accessed 24 Oct, 2010) © Green Design Institute, Carnegie Mellon University, 2010.

